chứng minh
\(\left(\sqrt{2}-1\right)^2=\sqrt{9}-\sqrt{8}\)
Chứng minh đẳng thức
\(\left(4-\sqrt{7}\right)^2=23-8\sqrt{7}\)
\(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
\(\dfrac{\sqrt{4-2\sqrt{3}}}{1+\sqrt{2}}:\dfrac{\sqrt{2}-1}{\sqrt{3}+1}=2\)
\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}=-1,5\)
\(\left(4-\sqrt{7}\right)^2=4^2-2\cdot4\cdot\sqrt{7}+7\)
\(=16-8\sqrt{7}+7=23-8\sqrt{7}\)
\(\sqrt{9-4\sqrt{5}}-\sqrt{5}\)
\(=\sqrt{5-2\cdot\sqrt{5}\cdot2+4}-\sqrt{5}\)
\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}\)
\(=\left|\sqrt{5}-2\right|-\sqrt{5}\)
\(=\sqrt{5}-2-\sqrt{5}=-2\)
\(\dfrac{\sqrt{4-2\sqrt{3}}}{1+\sqrt{2}}:\dfrac{\sqrt{2}-1}{\sqrt{3}+1}\)
\(=\dfrac{\sqrt{3-2\cdot\sqrt{3}\cdot1+1}}{\sqrt{2}+1}\cdot\dfrac{\sqrt{3}+1}{\sqrt{2}-1}\)
\(=\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}+1}\cdot\dfrac{\sqrt{3}+1}{\sqrt{2}-1}\)
\(=\dfrac{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}=\dfrac{3-1}{2-1}=2\)
\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right)\cdot\dfrac{1}{\sqrt{6}}\)
\(=\left(\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-\dfrac{6\sqrt{6}}{3}\right)\cdot\dfrac{1}{\sqrt{6}}\)
\(=\left(\dfrac{1}{2}\sqrt{6}-2\sqrt{6}\right)\cdot\dfrac{1}{\sqrt{6}}\)
\(=\dfrac{1}{2}-2=-\dfrac{3}{2}=-1,5\)
Chứng minh đẳng thức
\(\left(4-\sqrt{7}\right)^2=23-8\sqrt{7}\)
\(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
\(\dfrac{\sqrt{4-2\sqrt{3}}}{1+\sqrt{2}}:\dfrac{\sqrt{2}-1}{\sqrt{3}-1}=2\)
\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}=-1,5\)
Chứng minh :
a) \(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=8\)
b) \(2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)
a) \(VT=\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=\sqrt{\left(9-\sqrt{17}\right)\left(9+\sqrt{17}\right)}\)
=\(\sqrt{9^2-\left(\sqrt{17}\right)^2}=\sqrt{81-17}=\sqrt{64}=8=VP\)
b) \(VT=2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}\)
=\(2\sqrt{6}-4\sqrt{2}+1+4\sqrt{2}+8-2\sqrt{6}=9=VP\)
Chứng minh
\(\left(\sqrt{4}-\sqrt{3}\right)^2=\sqrt{49}-\sqrt{48}\)
\(2\sqrt{2}\left(2-3\sqrt{3}\right)+\left(1-2\sqrt{2}\right)^2+6\sqrt{6}=9\)
\(\sqrt{8-2\sqrt{15}-\sqrt{8+2\sqrt{15}}}=-2\sqrt{3}\)
+) \(\left(\sqrt{4}-\sqrt{3}\right)^2=4-2\sqrt{4\cdot3}+3=7-2\sqrt{7}=\sqrt{49}-\sqrt{48}\)
+) \(2\sqrt{2}\left(2-3\sqrt{3}\right)+\left(1-2\sqrt{2}\right)^2+6\sqrt{6}\)
\(=4\sqrt{2}-6\sqrt{6}+9-4\sqrt{2}+6\sqrt{6}\)
\(=9\)
+) Sửa : \(\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)
\(=\sqrt{5-2\sqrt{5}\cdot\sqrt{3}+3}-\sqrt{5+2\sqrt{5}\cdot\sqrt{3}+3}\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)
\(=\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}\)
\(=-2\sqrt{3}\)
Chứng minh
\(a,\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
\(b,\frac{\sqrt{2}+1}{\sqrt{2}-1}=3+2\sqrt{2}\)
\(c,2\sqrt{2}\left(3-\sqrt{2}\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)
\(d,\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}=8\)
\(e,\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}=8\)
\(f,\sqrt{\sqrt{2}+1}-\sqrt{\sqrt{2}-1}=\sqrt{2\left(\sqrt{2}-1\right)}\)
\(a,\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
Ta có
:\(VT=\sqrt{9-4\sqrt{5}}-\sqrt{5}\)
\(=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{5}\)
\(=|2-\sqrt{5}|-\sqrt{5}\)
\(=\sqrt{5}-2-\sqrt{5}\)
\(=-2=VP\left(đpcm\right)\)
\(b,\frac{\sqrt{2}+1}{\sqrt{2}-1}=3+2\sqrt{2}\)
Ta có:
\(VT=\frac{\sqrt{2}+1}{\sqrt{2}-1}\)
\(=\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\)
\(=\frac{2+\sqrt{2}+\sqrt{2}+1}{\sqrt{2}^2-1^2}\)
\(=\frac{3+2\sqrt{2}}{2-1}\)
\(=3+2\sqrt{2}=VP\left(đpcm\right)\)
c,Bạn xem lại đề
\(d,\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}=8\)
Ta có:
\(VT=\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}\)
\(=\sqrt{\frac{2^2}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{2^2}{\left(2+\sqrt{5}\right)^2}}\)
\(=\frac{2}{|2-\sqrt{5}|}-\frac{2}{|2+\sqrt{5}|}\)
\(=\frac{2\left(2+\sqrt{5}\right)}{\left(\sqrt{5}-2\right)\left(2+\sqrt{5}\right)}-\frac{2\left(\sqrt{5}-2\right)}{\left(2+\sqrt{5}\right)\left(\sqrt{5}-2\right)}\)
\(=\frac{4+2\sqrt{5}-2\sqrt{5}+4}{\sqrt{5}^2-2^2}\)
\(=\frac{8}{5-4}\)
\(=8=VP\left(đpcm\right)\)
\(e,\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}=8\)
\(VT=\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}\)
\(=\left(3+\sqrt{5}\right)\sqrt{2}\left(\sqrt{5}-1\right)\sqrt{3-\sqrt{5}}\)
\(=\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\sqrt{6-2\sqrt{5}}\)
\(=\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\left(\sqrt{\left(1-\sqrt{5}\right)^2}\right)\)
\(=\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)|1-\sqrt{5}|\)
\(=\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\left(\sqrt{5}-1\right)\)
\(=\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)^2\)
\(=\left(3+\sqrt{5}\right)\left(6-2\sqrt{5}\right)\)
\(=\left(3+\sqrt{5}\right).2\left(3-\sqrt{5}\right)\)
\(=[3^2-\left(\sqrt{5}\right)^2].2\)
\(=4.2=8=VP\left(đpcm\right)\)
Chứng minh
\(a,\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
\(b,\frac{\sqrt{2}+1}{\sqrt{2}-1}=3+2\sqrt{2}\)
\(c,2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)
\(d,\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}=8\)
\(e,\left(3+\sqrt{5}\right)\left(10-\sqrt{2}\right)\sqrt{3-\sqrt{5}}=8\)
\(f,\sqrt{\sqrt{2}+1}-\sqrt{\sqrt{2}-1}=\sqrt{2\left(\sqrt{2}-1\right)}\)
Chứng minh các đẳng thức sau :
a) \(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=8\)
b) \(\left(\sqrt{2}-1\right)^2=\sqrt{9}-\sqrt{8}\)
a/ \(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=\sqrt{81-17}=\sqrt{64}=8\)
b/ \(\left(\sqrt{2}-1\right)^2=2-2\sqrt{2}+1=\sqrt{9}-\sqrt{8}\)
a) Bình phương vế trái, ta được:
\(\left(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}\right)^2\)
\(\Leftrightarrow\left(9-\sqrt{17}\right).\left(9+\sqrt{17}\right)\)
\(\Leftrightarrow81-17=64=8^2\)
\(\Rightarrow\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=8\left(đpcm\right)\)
b) Ta có: \(\left(\sqrt{2}-1\right)^2=\left(\sqrt{2}\right)^2-2\sqrt{2}+1=2-2\sqrt{2}+1=3-2\sqrt{2}=\sqrt{9}-\sqrt{8}\) (đpcm)
Chứng minh: \(2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)
\(VT=2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}\)
\(=2\sqrt{6}-4\sqrt{2}+1+4\sqrt{2}+8-2\sqrt{6}\)
\(=9=VP\)
Bài 1 : Rút gọn
a) \(\frac{\sqrt{6}+\sqrt{16}}{2\sqrt{3}+\sqrt{28}}\)
b) \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3+\sqrt{4}}}\)
Bài 2: Chứng minh
a)\(\sqrt{9-\sqrt{17}}-\sqrt{9+\sqrt{17}}=8\)
b)\(2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)
Bài 2:
a)
\(\sqrt{9-\sqrt{17}}-\sqrt{9+\sqrt{17}}=\sqrt{\frac{18-2\sqrt{17}}{2}}-\sqrt{\frac{18+2\sqrt{17}}{2}}\)
\(=\sqrt{\frac{17+1-2\sqrt{17}}{2}}-\sqrt{\frac{17+1+2\sqrt{17}}{2}}=\sqrt{\frac{(\sqrt{17}-1)^2}{2}}-\sqrt{\frac{(\sqrt{17}+1)^2}{2}}\)
\(=\frac{\sqrt{17}-1}{\sqrt{2}}-\frac{\sqrt{17}+1}{\sqrt{2}}=-\sqrt{2}\)
b)
\(2\sqrt{2}(\sqrt{3}-2)+(1+2\sqrt{2})^2-2\sqrt{6}\)
\(=2\sqrt{6}-4\sqrt{2}+(1+4\sqrt{2}+8)-2\sqrt{6}\)
\(=1+8=9\)
Bài 1:
a)
\(\frac{\sqrt{6}+\sqrt{16}}{2\sqrt{3}+\sqrt{28}}=\frac{\sqrt{6}+4}{2(\sqrt{3}+\sqrt{7})}=\frac{1}{2}.\frac{(\sqrt{6}+4)(\sqrt{7}-\sqrt{3})}{(\sqrt{3}+\sqrt{7})(\sqrt{7}-\sqrt{3})}\)
\(=\frac{(4+\sqrt{6})(\sqrt{7}-\sqrt{3})}{8}\)
b) \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{6}+\sqrt{8}+\sqrt{16}-\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{6}+\sqrt{8}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{(\sqrt{2}+\sqrt{3}+\sqrt{4})+\sqrt{2}(\sqrt{2}+\sqrt{3}+\sqrt{4})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{(\sqrt{2}+1)(\sqrt{2}+\sqrt{3}+\sqrt{4})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\sqrt{2}+1\)