Những câu hỏi liên quan
XK
Xem chi tiết
LL
3 tháng 1 2016 lúc 21:50

Chtt

Bình luận (0)
LT
3 tháng 1 2016 lúc 21:53

Đêm ùi mà còn nhờ 1 đống zậy muốn xỉu lun oy

Bình luận (0)
XK
3 tháng 1 2016 lúc 21:53

Toán khó phải có người lo mink ko lo đc mấy bn lo dùm mink nka

Bình luận (0)
LT
Xem chi tiết
BH
22 tháng 12 2014 lúc 19:53

11^10-1

=(...1)-1

=(..0) chia hết cho 10

Bình luận (0)
NA
1 tháng 3 2015 lúc 20:40

ê mấy bn đề bài bảo chứng mik chia hết cho 100 mà

 

Bình luận (0)
TH
7 tháng 3 2015 lúc 21:47

Mình chỉ biết chia hết vs 10 thui nha còn 100 thì chắc là không bao giờ xảy ra đối vs đề này.

11 đồng dư vs 1 (mod 10)

=> 11^10 đồng dư với 1 (mod 10)

=> 11^10 -1 chia hết cho 10 (đpcm)

Bình luận (0)
H24
Xem chi tiết
NT
Xem chi tiết
KG
Xem chi tiết
PM
14 tháng 1 2017 lúc 19:54

biết 1890 chia hết cho 7

1945+1 =1946 chia hết cho 7

1946+1890=3836 cũng chia hết cho 7

số mũ =a x a x a x.......

mà bất cứ số nào chia hết cho 7 nhân với bao nhiêu cũng chia hết cho 7 vậy suy ra 18901930+19451975+1 chia hết cho 7

Bình luận (0)
TL
Xem chi tiết
TA
16 tháng 8 2017 lúc 18:37

bài 4 à bà

Bình luận (0)
TL
Xem chi tiết
AH
29 tháng 7 2021 lúc 23:42

Lời giải:

Bổ sung điều kiện $n$ là số tự nhiên khác $0$

Gọi biểu thức trên là $A$. Ta có:
\(7\equiv -1\pmod 4\Rightarrow 7^{2^{4n+1}}\equiv (-1)^{2^{4n+1}}\equiv 1\pmod 4\)

\(4^{3^{4n+1}}\equiv 0\pmod 4\)

\(\Rightarrow A\equiv 1+0-65=-64\equiv 0\pmod 4\)

Vậy $A\vdots 4(*)$

Mặt khác:
Với $n$ là số tự nhiên khác $0$ thì $2^{4n+1}$ chia hết cho $4$ 

$\Rightarrow 7^{2^{4n+1}}=7^{4k}=(7^4)^k\equiv 1\pmod {25}$

$3^{4n+1}=3.81^n\equiv 3\pmod {10}$

$\Rightarrow 3^{4n+1}=10t+3$

$\Rightarrow 4^{3^{4n+1}}=4^{10t+3}=64.(4^{10})^t\equiv 64\pmod {25}$

Do đó:

$A\equiv 1+64-65\equiv 0\pmod {25}$ hay $A\vdots 25(**)$

Từ $(*); (**)\Rightarrow A\equiv 0\pmod {100}$

Ta có đpcm.

 

Bình luận (1)
TC
29 tháng 7 2021 lúc 22:27

Bạn có thể gõ lại công thức rõ hơn được không?

Bình luận (1)
HP
Xem chi tiết
LK
Xem chi tiết