Những câu hỏi liên quan
PS
Xem chi tiết
TQ
Xem chi tiết
VT
18 tháng 9 2017 lúc 21:29

vì abc chia hết cho 27, mà \(27=3^3\)=> abc phải chia hết cho 3

để abc chia hết cho 3 <=> a+b+c \(⋮\)3

do abc chia hết cho 3 phụ thuộc vào tổng các chữ số

=> \(abc⋮3\Rightarrow bca⋮3\)hay bca chia hết cho 27

Bình luận (0)
DL
18 tháng 9 2017 lúc 21:32

abc chia hết cho 27 

\(\Rightarrow\)( 100a + 10b + c ) chia hết cho 27

\(\Rightarrow\)10 . ( 100a + 10b + c ) chia hết cho 27

\(\Rightarrow\)1000a + 100b + 10c chia hết cho 27

\(\Rightarrow\)999a + ( 100b + 10c + a ) chia hết cho 27

Mà 999a chia hết cho 27 \(\Rightarrow\)bca chia hết cho 27 .

Bình luận (0)
NL
18 tháng 9 2017 lúc 21:38

Giả sử \(\overline{abc}\)chia hết cho 27 thì trước hết \(\overline{abc}\)phải chia hết cho 9 \(\Rightarrow\)a + b + c chia hết cho 9 

\(\Rightarrow\overline{bca}\)cũng chia hết cho 9 \(\Rightarrow\overline{bca}=9m\left(m\in N\right)\)

Theo bài ra ta có :

 \(\Leftrightarrow\left(100a+10b+c\right)-\left(100b+10c+a\right)=9\left(3k-m\right)\)

\(\Leftrightarrow99a-90b-9c=9\left(3k-m\right)\)

\(\Leftrightarrow11a-10b-c+m=3k\)

\(\Leftrightarrow21a-10\left(a+b+c\right)+9c+m=3k\)

Vế phải chia hết cho 3 mà các số : \(21a;10\left(a+b+c\right)\)và \(9c\)đều chia hết cho 3 

\(\Rightarrow m\)cũng chia hết cho 3

\(\Rightarrow m=3n\left(n\in N\right)\)

\(\Rightarrow\overline{bca}=9m=27n\)

\(\Rightarrow\overline{bca}\)chia hết cho 27 ( đpcm ) 

Bình luận (0)
HT
Xem chi tiết
ND
10 tháng 7 2015 lúc 23:22

Ta có abc chia hết cho 27 thì abc0 chia hết cho 27. 
-> a000 + bc0 chia hết cho 27 
-> 1000.a +bc0 chia hết cho 27 
-> 999.a + a + bc0 chia hết cho 27 
-> 37 x 27 x a + bca chia hết cho 27 
Do 37 x 27 x a chia hết cho 27 nên bca chia hết cho 27.

Bình luận (0)
NN
Xem chi tiết
VT
23 tháng 10 2015 lúc 20:50

a, ab + ba= ( 10a +b )+ (10b+a ) = 11a + 11b= 11(a+b) chia hết cho 11

Vậy ab+ba chia hết cho 11

b, ab - ba = (10a + 10b ) + ( 10b + a ) = 9a+9b= 9 (a+b) chia hết cho 9

Vậy ab - ba chia hết cho9

Bình luận (0)
VA
Xem chi tiết
NH
10 tháng 3 2017 lúc 16:07

\(a\), \(abc⋮37\Rightarrow cba⋮37\)

\(Ta\) \(có\) :

\(abc⋮37\Rightarrow100a+10b+c⋮37\)

\(abc⋮37\Rightarrow10abc⋮37\)

\(\Rightarrow1000a+100b+10c⋮37\)

\(\Rightarrow999a+\left(100b+10c+a\right)⋮37\)

=> \(999a+bca⋮37\)

\(Mà\) \(999a⋮37\)

\(\Rightarrow bca⋮37\)

\(\Rightarrowđpcm\)

\(b\)) \(Lại\) \(có\) : \(bca⋮37\) \(\left(cmt\right)\)

\(\Rightarrow10bca⋮37\)

\(\Rightarrow1000b⋮100c+10a+b⋮37\)

\(\Rightarrow999b+100c+10a+b⋮37\)

\(999b⋮37\)

\(\Rightarrow999b⋮37\)

\(\Rightarrowđpcm\)

Bình luận (0)
NT
Xem chi tiết
DH
11 tháng 7 2017 lúc 10:00

a, Ta có:

\(\overline{ab}+\overline{ba}=10a+b+10b+a=11\left(a+b\right)\)

=> ab + ba chia hết cho 11(đpcm)

b, Ta có:
\(\overline{ab}-\overline{ba}=10a+b-10b-a=9\left(a-b\right)\)

=> ab - ba chia hết cho 9 (a > b)(đpcm)

Chúc bạn học tốt!!!

Bình luận (0)
QD
11 tháng 7 2017 lúc 10:05

c) Câu hỏi của Mai Trung Kiên - Toán lớp 6 - Học toán với OnlineMath

tham khảo nhé bạn

Bình luận (0)
MS
11 tháng 7 2017 lúc 11:30

\(\overline{ab}+\overline{ba}=10a+b+10b+a=11.a+11.b=11\left(a+b\right)⋮11\rightarrowđpcm\)\(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\rightarrowđpcm\)

\(\overline{abc}⋮27\Rightarrow\overline{abc}⋮3^3\Rightarrow\overline{abc}⋮3\)

\(\Rightarrow a+b+c⋮3\Rightarrow b+c+a⋮3\)

\(\Rightarrow\overline{bca}⋮3\rightarrowđpcm\)

Bình luận (3)
H24
Xem chi tiết
H24
12 tháng 1 2017 lúc 22:39

có ai TL k

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
CH
15 tháng 10 2023 lúc 13:35

đáp án đây bạn nhé:

a, ab + ba= ( 10a +b )+ (10b+a ) = 11a + 11b= 11(a+b) chia hết cho 11

Vậy ab+ba chia hết cho 11

b, ab - ba = (10a + 10b ) + ( 10b + a ) = 9a+9b= 9 (a+b) chia hết cho 9

Vậy ab - ba chia hết cho9

Bình luận (0)