a) c/m rằng hiệu các bình phương của 2 số nguyên liên tiếp là một số lẻ cần gắp
Chứng minh rằng hiệu các bình phương của hai số nguyên liên tiếp là một số lẻ
Chứng minh rằng hiệu các bình phương của hai số nguyên liên tiếp là một số lẻ
gọi 2 số nguyên liên tiếp là a và a+1 .Ta có:
(a+1)2 - a2 =a2+2a+1-a2
=2a+1
vì 2a là số chẵn nên 2a+1 là số lẻ
=> KL
Chứng minh rằng hiệu các bình phương của hai số lẻ liên tiếp là một số lẻ
Sửa đề: Là số chẵn
Gọi hai số lẻ liên tiếp là 2n-1 và 2n-3
Ta có: \(\left(2n-1\right)^2-\left(2n-3\right)^2\)
\(=\left(2n-1-2n+3\right)\left(2n-1+2n-3\right)\)
\(=2\left(4n-4\right)⋮2\)
1. Tính tổng của n số lẻ đầu tiên
2. Chứng minh rằng mỗi số lẻ là hiệu của bình phương hai số tự nhiên liên tiếp. Áp dụng viết số 37 dưới dạng hiệu của bình phương hai số lẻ liên tiếp
1) Tìm tổng của n số lẻ đầu tiên.
2) Chứng minh rằng mỗi số lẻ là hiệu của bình phương hai số tự nhiên liên tiếp.
-Áp dụng viết số 37 dưới dạng hiệu của bình phương hai số lẻ liên tiếp.
NHỚ GIẢI RA NHÉ! MIK CẢM ƠN!
Tìm 2 số tự nhiên lẻ liên tiếp, biết rằng hiệu các bình phương của chúng bằng 56
Gọi 2 số lẻ liên tiếp là a^2,(a+2)^2.
Ta có (a+2)^2-a^2=a^2+4a+4-a^2=4a+4=56.
=>4a=52=> a=13. Vậy 2 số lẻ liên tiếp đó là 13,15
Chứng minh rằng hiệu các bình phương của 2 số lẻ liên tiếp chia hết cho 8
Gọi 2k+1 va 2p+1 la các số lẻ
hieu cac binh phuong cua 2 so le la`:
( 2k + 1 )^2 - ( 2p+11)^2 = ( 2k + 1+2p+1)( 2k + 1-2p-1)= ( 2k +2p+2)( 2k -2p)=4(k+p+1)(k-p)
=4(k+p+1)(k+p-2p)=4(k+p+1)(k+p)-8p(k+p...
Vì 4(k+p+1)(k+p) chia hết cho 8 và 8p(k+p+1) chia hết cho 8
Vậy ( 2k + 1 )^2 - ( 2p+11)^2 chia hết cho 8
sọi hai số lẽ liên tiếp đó là: 2a+1;2a+3
=>(2a+1)2-(2a+3)2=(2a+1+2a+3)(2a+1-2a-3)
=(4a+4).(-2)=4(a+1)(-2)=-8(a+1)
vì -8 chia hết cho 8 =>-8(a+1) chia hết cho 8
vậy bình phương của 2 số lẻ liên tiếp chia hết cho 8
Chứng minh rằng hiệu các bình phương của 2 số lẻ liên tiếp chia hết cho 8
Gọi 2 số lẻ liên tiếp là 2k+1 và 2k+3
Ta có:(2k+3)2-(2k+1)2=(2k+3-2k-1)(2k+3+2k+1)=2(4k+4)=8(k+1) chia hết cho 8
Vậy hiệu 2 số lẻ liên tiếp chia hết cho 8
Giả
Gọi 2 số lẻ liên tiếp là 2k+1 và 2k+3
Ta có:(2k+3)2-(2k+1)2=(2k+3-2k-1)(2k+3+2k+1)=2(4k+4)=8(k+1) chia hết cho 8
Vậy hiệu 2 số lẻ liên tiếp chia hết cho 8.
Gọi 2 số lẻ liên tiếp là 2k+1 và 2k+3
Ta có:(2k+3)2-(2k+1)2=(2k+3-2k-1)(2k+3+2k+1)=2(4k+4)=8(k+1) chia hết cho 8
Vậy hiệu 2 số lẻ liên tiếp chia hết cho 8
đúng ko
1) Cho P= 1+x+x^2+....+x^10. Chứng minh rằng: xP-P = x^11-1?
2) Chứng minh rằng hiệu các bình phương của hai số nguyên liên tiếp là một số lẻ?
3) Chứng minh rằng hiệu các bình phương của hai số chẵn liên tiếp luôn chia hết cho 4?
4) Biết số tự nhiên n chia cho 8 dư 5. Khi đó n^2 chia cho 8 có dư bằng...?
5) Tìm giá trị x thỏa mãn: 4x(5x-1)+10(2-2x)=16?
6) Phân tích đa thức thành nhân tử: x^3+2x^2-11x-12?