Những câu hỏi liên quan
PN
Xem chi tiết
ZZ
20 tháng 9 2019 lúc 16:02

\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)

\(\Rightarrow\frac{x+1}{2009}+1+\frac{x+2}{2008}+1+\frac{x+3}{2007}+1=\frac{x+10}{2000}+1+\frac{x+11}{1999}+1+\frac{x+12}{1998}+1\)

\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+1010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)

\(\Rightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\right)=\left(x+2010\right)\left(\frac{1}{2000}+\frac{1}{1999}+\frac{1}{1998}\right)\)

\(\Rightarrow x+2010=0\) vì \(0< \frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}< \frac{1}{2000}+\frac{1}{1999}+\frac{1}{1998}\)

\(\Rightarrow x=-2010\)

Bình luận (0)
H24
20 tháng 9 2019 lúc 16:12

                                                            Bài giải

\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)

\(\Rightarrow\left(\frac{x+1}{2009}+1\right)+\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+3}{2007}+1\right)=\left(\frac{x+10}{2000}+1\right)+\left(\frac{x+11}{1999}+1\right)+\left(\frac{x+12}{1998}+1\right)\)

\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)

\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-(\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998})=0\)

\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}=0\)

\(\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)

\(\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)\ne0\) nên \(x+2010=0\)

                                                                                                                          \(x=0-2010=-2010\)

Bình luận (0)
Me
20 tháng 9 2019 lúc 13:46

Phan Uyên Nhi

Bạn bấm vào câu hỏi tương tự rồi tham khảo nha !

Có rất nhiều bài giống bài của bạn hỏi đó !

Bình luận (0)
LB
Xem chi tiết
NL
Xem chi tiết
ZM
20 tháng 10 2017 lúc 22:39

\(\dfrac{X+1}{2009}+\dfrac{x+2}{2008}+\dfrac{x+3}{2007}=\dfrac{x+10}{2000}+\dfrac{x+11}{1999}+\dfrac{x+12}{1998}\)

đề thế này mới đúng ngu ạ

làm nhé nhớ tickbanh

\(\Rightarrow\dfrac{x+2010}{2009}+\dfrac{x+2010}{2008}+\dfrac{x+2010}{2007}-\dfrac{x+2010}{2000}-\dfrac{x+2010}{1999}-\dfrac{x+2010}{1998}=0\)

\(\Rightarrow\left(x+2010\right).\left(\dfrac{1}{2009}+\dfrac{1}{2008}+\dfrac{1}{2007}-\dfrac{1}{2000}-\dfrac{1}{1999}-\dfrac{1}{1998}\right)\)\(\Rightarrow x+2010=0\)

\(\Rightarrow x=-2010\)

liêm đăng cmt

Bình luận (0)
H24
Xem chi tiết
NH
10 tháng 7 2019 lúc 17:59

\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)

\(\Leftrightarrow\left(\frac{x+1}{2009}+1\right)+\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+3}{2007}+1\right)=\left(\frac{x+10}{2000}+1\right)+\left(\frac{x+11}{1999}+1\right)+\left(\frac{x+12}{1998}+1\right)\)

\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)

\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}=0\)

\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)

\(\Leftrightarrow x+2010=0\)

\(\Leftrightarrow x=-2010\)

Bình luận (0)
H24
Xem chi tiết
TV
2 tháng 9 2017 lúc 15:43

x=-2010 nhé

chúc bạn hc tốt

Bình luận (0)
DH
7 tháng 6 2018 lúc 14:54

\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)

\(\Rightarrow\frac{x+1}{2009}+1+\frac{x+2}{2008}+x+\frac{x+3}{2007}+1=\frac{x+10}{2000}+1+\frac{x+11}{1999}+1+\frac{x+12}{1998}+1\)

\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)

\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}\)

\(\Rightarrow\left(x+2010\right).\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)

Vì \(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\ne0\)

Nên x + 2010 = 0 => x = -2010

Bình luận (0)
NA
7 tháng 6 2018 lúc 15:04

x+1/2009+1+x+2/2008+1+x+3/2007+1=x+10/2000+1+x+11/1999+1+x+12/1998

x+2010/2009+x+2010/2008+x+2010/2007=x+2010/2000+x+2010/1999+x+2010/1998

x+2010*(1/2009+1/2008+1/2007-1/200-1/1999-1/1998)=0

x+2010=0

x=-2010

Bình luận (0)
H24
Xem chi tiết
H24
18 tháng 8 2021 lúc 10:09

\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}.\)

\(\frac{x+1}{2009}+1+\frac{x+2}{2008}+1+\frac{x+3}{2007}+1=\frac{x+10}{2000}+1+\frac{x+11}{1999}+1+\frac{x+12}{1998}+1.\)(cộng 2 vế cho 3)

\(\frac{x+1}{2009}+\frac{2009}{2009}+\frac{x+2}{2008}+\frac{2008}{2008}+\frac{x+3}{2007}+\frac{2007}{2007}=\frac{x+10}{2000}+\frac{2000}{2000}+\frac{x+11}{1999}+\frac{1999}{1999}+\frac{x+12}{1998}+\frac{1998}{1998}.\)

\(\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}.\)

\(\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}=0\)

x+2010=0

x=-2010

Bình luận (0)
 Khách vãng lai đã xóa
MN
18 tháng 8 2021 lúc 10:16

\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)

\(\Leftrightarrow\left(1+\frac{x+1}{2009}\right)+\left(1+\frac{x+2}{2008}\right)+\left(1+\frac{x+3}{2007}\right)\)

\(=\left(1+\frac{x+10}{2000}\right)+\left(1+\frac{x+11}{1999}\right)+\left(1+\frac{x+12}{1998}\right)\)

\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x=2010}{1998}\)

\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}\)

\(=0\)

\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)

\(\Leftrightarrow x+2010=0\)

\(\Leftrightarrow x=-2010\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
18 tháng 8 2021 lúc 10:05

\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)

\(\Leftrightarrow\frac{x+1}{2009}+1+\frac{x+2}{2008}+1+\frac{x+3}{2007}+1=\frac{x+10}{2000}+1+\frac{x+11}{1999}+1+\frac{x+12}{1998}+1\)

\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)

\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\ne0\right)=0\Leftrightarrow x=-2010\)

Bình luận (0)
 Khách vãng lai đã xóa
SK
Xem chi tiết
ND
22 tháng 9 2020 lúc 20:46

P/s: Công vào 6 phân thức trên, mỗi phân thức công thêm 1 rồi quy đồng lên ta được:

\(\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)

\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)

Ta xét: \(\hept{\begin{cases}\frac{1}{2009}< \frac{1}{2000}\\\frac{1}{2008}< \frac{1}{1999}\\\frac{1}{2007}< \frac{1}{1998}\end{cases}}\Rightarrow\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}< 0\)

=> \(x+2010=0\Rightarrow x=-2010\)

Vậy x = -2010

Bình luận (0)
 Khách vãng lai đã xóa
KN
22 tháng 9 2020 lúc 20:48

\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)

\(\Leftrightarrow\left(1+\frac{x+1}{2009}\right)+\left(1+\frac{x+2}{2008}\right)+\left(1+\frac{x+3}{2007}\right)\)

\(=\left(1+\frac{x+10}{2000}\right)+\left(1+\frac{x+11}{1999}\right)+\left(1+\frac{x+12}{1998}\right)\)

\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)

\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}=0\)

\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)

\(\Leftrightarrow x+2010=0\)

\(\Leftrightarrow x=-2010\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
22 tháng 9 2020 lúc 20:51

           Bài làm :

\(...\)

\(\Leftrightarrow\left(\frac{x+1}{2009}+1\right)+\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+3}{2007}+1\right)=\left(\frac{x+10}{2000}+1\right)+\left(\frac{x+11}{1999}+1\right)+\left(\frac{x+12}{1998}\right)\)

\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)

\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}=0\)

\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)

\(\text{Vì : }\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)\ne0\)

\(\Rightarrow x+2010=0\Leftrightarrow x=-2010\)

Vậy x=-2010

Bình luận (0)
 Khách vãng lai đã xóa
DL
Xem chi tiết
KT
12 tháng 8 2018 lúc 21:49

1)  \(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}=\frac{x+1}{5}+\frac{x+1}{6}\)

<=>  \(\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)=0\)

<=>  \(x+1=0\)  (do  1/2 + 1/3 + 1/4 - 1/5 - 1/6 khác 0)

<=>  \(x=-1\)

Vậy...

Bình luận (0)
KT
12 tháng 8 2018 lúc 21:52

\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)

<=>  \(\frac{x+1}{2009}+1+\frac{x+2}{2008}+1+\frac{x+3}{2007}+1=\frac{x+10}{2000}+1+\frac{x+11}{1999}+1+\frac{x+12}{1998}+1\)

<=>  \(\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)

<=>  \(\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)

<=>  \(x+2010=0\)  (do  1/2009 + 1/2008 + 1/2007 - 1/2000 - 1/1999 - 1/1998 khác 0)

<=>  \(x=-2010\)

Vậy....

Bình luận (0)
DL
Xem chi tiết
HA
12 tháng 8 2018 lúc 21:35

1,

x+1/2+x+1/3+x+1/4-x+1/5-x+1/6=0

(x+1)(1/2+1/3+1/4-1/5-1/6)=0

vì 1/2+1/3+1/4-1/5-1/6 khác 0

suy ra x+1=0 suy ra x=-1

Bình luận (0)