Chứng minh rằng : a, (10n - 9n -1) chia hết cho 27;
b , 1.2+ 2.3 + 3.4 +..... +n(n+1) = \(\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)
c, 1.2+2.5+3.8+......+ n(3n-1) = \(n^2\left(n+1\right)\)
d, 1.4 + 2.7 +3.10+...+ n(3n+1) = n(n+1)2.....
Chứng minh rằng J = 10 n + 18 n − 1 chia hết cho 27.
Sơ đồ con đường |
Lời giải chi tiết |
Bước 1. Chứng minh J = 10 n + 18 n − 1 chia hết cho 9. Bước 2. Chứng minh J = 10 n + 18 n − 1 chia hết cho 3. |
Ta có: J = 10 n + 18 n − 1 = 10 n − 1 + 18 n ⇒ J = 99...9 + 18 n ⇒ J = 9 11...1 + 2 n => J chia hết cho 9. +) Chứng minh 11...1 + 2 n ⋮ 3 . Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 gồm n chữ số 1. Khi đó, 1 + 1 + ... + 1 = n . Suy ra 11...1 và n có cùng số dư trong phép chia cho 3. => 11...1-n chia hết cho 3. => (11...1+2n) ⋮ 3
⇒
J
⋮
27
|
Chứng minh rằng J = 10 n + 18 n - 1 chia hết cho 27
Chứng minh rằng A 10n 18.n 1 chia hết cho 27 với n là số tự nhiên
1 Chứng minh rằng
b,B=165+215 chia hết cho 33
c,C=45+99+180 chia hết cho 9
d,D=2+22+23+...+2^60 chia hết cho 3;7;5
e,E=10n+18n-1 chia hết cho 27
b: \(B=16^5+2^{15}\)
\(=\left(2^4\right)^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}\left(2^5+1\right)=2^{15}\cdot33⋮33\)
c: \(45⋮9;99⋮9;180⋮9\)
Do đó: \(45+99+180⋮9\)
=>\(C⋮9\)
d: \(D=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2\right)+2^4\cdot\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{58}\right)⋮7\)
\(D=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{57}\right)\)
=>D chia hết cho cả 3 và 5
CMR: B = (10n – 9n – 1) chia hết cho 27 với n thuộc N*.
10^n - 9n - 1 chia hết cho 27 (*)
Sử dụng phương pháp quy nạp.
- Với n = 1, ta có 10^1 - 9x1 -1 = 0, chia hết cho 27.
- Giả sử (*) đúng với n = k (thuộc N*), tức là:
10^k - 9k - 1 chia hết cho 27
- Ta cần chứng minh (*) cũng đúng với cả n = k + 1, tức là:
10^(k+1) - 9(k+1) - 1 chia hết cho 27.
Thật vậy:
10^(k+1) - 9(k+1) - 1 = 10 x 10^k - 9k - 10 = 10 x (10^k - 9k -1) + 81k
10^k - 9k - 1 chia hết cho 27, nên lượng này nhân 10 lên cũng chia hết cho 27.
81 chia hết cho 27, nên 81k chia hết cho 27.
Vậy (*) đúng với mọi n thuộc N* (đpcm).
Chứng minh rằng 10n – 9n – 1 chia hết cho 27 với mọi n nguyên dương.
. Mình dùng quy nạp nha bạn ^^ 10n – 9n – 1 chia hết cho 27 (*)
. Đặt \(A=\)10n - 9n -1
. Với n = 0, ta có: A = 100-9.0-1=0 chia hết cho 27
. Giả sử với n=k \(\left(k\varepsilon N\right)\) thì mệnh đề (*) đúng, tức là 10k-9k-1 chia hết cho 27
. Với n=k+1, ta có: A=10(k+1)-9(k+1)-1 = 10k.10-9k-9-1 = 10k-9k-1 + 9.10k-10
. Ta thấy 10k-9k-1 chia hết cho 27(cmt) để A chia hết cho 27 thì ta cần cm 9.10k-10 chia hết cho 27
. Xét 9.10k-10, ta có: 9.10k-10 = 90(10k-1-1) = 90.(10-1).M ( M là 1 đa thức)
= 90.9.M chia hết cho 27
. Vậy A chia hết cho 27 =))
chứng Minh 10n-36n 1 chia hết cho 27
Chứng minh A=10^n-9n-1 chia hết cho 27 với n thuộc N
Nếu không bạn xem luộn dưới đây cũng được.
10^n - 9n - 1 chia hết cho 27 (*)
Sử dụng phương pháp quy nạp.
- Với n = 1, ta có 10^1 - 9x1 -1 = 0, chia hết cho 27.
- Giả sử (*) đúng với n = k (thuộc N*), tức là:
10^k - 9k - 1 chia hết cho 27
- Ta cần chứng minh (*) cũng đúng với cả n = k + 1, tức là:
10^(k+1) - 9(k+1) - 1 chia hết cho 27.
Thật vậy:
10^(k+1) - 9(k+1) - 1 = 10 x 10^k - 9k - 10 = 10 x (10^k - 9k -1) + 81k
10^k - 9k - 1 chia hết cho 27, nên lượng này nhân 10 lên cũng chia hết cho 27.
81 chia hết cho 27, nên 81k chia hết cho 27.
Vậy (*) đúng với mọi n thuộc N* (đpcm).
Chứng minh rằng
B = (10n – 9n – 1) chia hết cho 27 với n thuộc N*.
Chứng minh rằng
B = (10n – 9n – 1) chia hết cho 27 với n thuộc N*.