Những câu hỏi liên quan
LD
Xem chi tiết
NT
16 tháng 5 2023 lúc 9:09

2:

a: =>2x^2-4x-2=x^2-x-2

=>x^2-3x=0

=>x=0(loại) hoặc x=3

b: =>(x+1)(x+4)<0

=>-4<x<-1

d: =>x^2-2x-7=-x^2+6x-4

=>2x^2-8x-3=0

=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)

 

Bình luận (0)
DT
Xem chi tiết
TH
19 tháng 1 2022 lúc 20:51

a, \(\left(x-3\right)\left(x^2+x-20\right)\ge0\)

\(\Leftrightarrow\) \(\left(x-3\right)\left(x-4\right)\left(x+5\right)\ge0\)

+) \(x-3=0\Leftrightarrow x=3\)\(x-4=0\Leftrightarrow x=4\)\(x+5=0\Leftrightarrow x=-5\)

+) Lập trục xét dấu f(x) (Bạn tự kẻ trục nha)

\(\Rightarrow\) Bpt có tập nghiệm S = \(\left[-5;3\right]\cup\) [4; \(+\infty\))

b, \(\dfrac{x^2-4x-5}{2x+4}\ge0\)

\(\Leftrightarrow\) \(\dfrac{\left(x-5\right)\left(x+1\right)}{2x+4}\ge0\)

+) \(x-5=0\Leftrightarrow x=5\)\(x+1=0\Leftrightarrow x=-1\)\(2x+4=0\Leftrightarrow x=-2\)

+) Lập trục xét dấu f(x) 

\(\Rightarrow\) Bpt có tập nghiệm S = (-2; -1] \(\cup\) [5; \(+\infty\))

c, \(\dfrac{-1}{x^2-6x+8}\le1\)

\(\Leftrightarrow\) \(\dfrac{\left(x-3\right)^2}{\left(x-4\right)\left(x-2\right)}\ge0\)

+) \(x-3=0\Leftrightarrow x=3\)\(x-4=0\Leftrightarrow x=4\)\(x-2=0\Leftrightarrow x=2\)

+) Lập trục xét dấu f(x)

\(\Rightarrow\) Bpt có tập nghiệm S = (\(-\infty\); 2) \(\cup\) (4; \(+\infty\))

Chúc bn học tốt!

Bình luận (0)
NC
Xem chi tiết
HP
2 tháng 2 2021 lúc 17:08

1.

\(x^4-6x^2-12x-8=0\)

\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)

\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)

\(\Leftrightarrow x=1\pm\sqrt{5}\)

Bình luận (0)
HP
2 tháng 2 2021 lúc 17:22

3.

ĐK: \(x\ge-9\)

\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)

\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)

Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)

\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)

\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (2)
HP
2 tháng 2 2021 lúc 17:14

2.

ĐK: \(x\ne\dfrac{2\pm\sqrt{2}}{2};x\ne\dfrac{-2\pm\sqrt{2}}{2}\)

\(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)

\(\Leftrightarrow\dfrac{1}{2x+\dfrac{1}{x}+4}+\dfrac{1}{2x+\dfrac{1}{x}-4}=\dfrac{3}{5}\)

Đặt \(2x+\dfrac{1}{x}+4=a;2x+\dfrac{1}{x}-4=b\left(a,b\ne0\right)\)

\(pt\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{5}\left(1\right)\)

Lại có \(a-b=8\Rightarrow a=b+8\), khi đó:

\(\left(1\right)\Leftrightarrow\dfrac{1}{b+8}+\dfrac{1}{b}=\dfrac{3}{5}\)

\(\Leftrightarrow\dfrac{2b+8}{\left(b+8\right)b}=\dfrac{3}{5}\)

\(\Leftrightarrow10b+40=3\left(b+8\right)b\)

\(\Leftrightarrow\left[{}\begin{matrix}b=2\\b=-\dfrac{20}{3}\end{matrix}\right.\)

TH1: \(b=2\Leftrightarrow...\)

TH2: \(b=-\dfrac{20}{3}\Leftrightarrow...\)

Bình luận (0)
DQ
Xem chi tiết
VH
22 tháng 7 2023 lúc 15:02

\(x^4+4x^3+6x^2+4x+\sqrt{x^2+2x+17}=3\)

Ta có: \(x^2+2x+17=(x^2+2x+1)+16=\left(x+1\right)^2+16\ge16\)

\(\Rightarrow\sqrt{x^2+2x+17}\ge\sqrt{16}=4\)

\(\Rightarrow x^4+4x^3+6x^2+4x+\sqrt{x^2+2x+17}=3\ge x^4+4x^3+6x^2+4x+4\)

\(\Leftrightarrow x^4+4x^3+6x^2+4x+1\le0\)

\(\Leftrightarrow\left(x+1\right)^4\le0\)

Mà \(\left(x+1\right)^4\ge0\Rightarrow(x+1)^4=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Thử lại ta thấy x=-1 thỏa mãn bài toán

Vậy, pt có nghiệm duy nhất là x=-1

Bình luận (0)
DM
Xem chi tiết
TN
27 tháng 3 2017 lúc 19:08

cách khác đơn giản hơn nhiều 

Đk:\(x\ge1\)

\(pt\Leftrightarrow\sqrt{2\left(x-1\right)\left(x+4\right)}+\sqrt{2\left(x-1\right)\left(x+3\right)}-3\sqrt{x+4}-3\sqrt{x+3}-1=0\)

\(\Leftrightarrow\sqrt{2\left(x-1\right)\left(x+4\right)}-3\sqrt{x+4}+\sqrt{2\left(x-1\right)\left(x+3\right)}-3\sqrt{x+3}=1\)

\(\Leftrightarrow\sqrt{x+4}\left(\sqrt{2\left(x-1\right)}-3\right)+\sqrt{x+3}\left(\sqrt{2\left(x-1\right)}-3\right)=1\)

\(\Leftrightarrow\left(\sqrt{x+4}+\sqrt{x+3}\right)\left(\sqrt{2\left(x-1\right)}-3\right)=1\)

Xét Ư(1)={1;-1}={....}

Dễ nhé, tự làm nốt

Bình luận (0)
TN
27 tháng 3 2017 lúc 19:03

Đk: \(x\ge1\)

\(pt\Leftrightarrow\sqrt{2x^2+6x-8}+\sqrt{2x^2+4x-6}-3\sqrt{x+4}-3\sqrt{x+3}-1=0\)

\(\Leftrightarrow\sqrt{2x^2+6x-8}-\frac{10}{3}\sqrt{x+3}+\frac{1}{3}\sqrt{x+3}-1\sqrt{2x^2+4x-6}-3\sqrt{x+4}=0\)

\(\Leftrightarrow\frac{2x^2+6x-8-\frac{100}{9}\left(x+3\right)}{\sqrt{2x^2+6x-8}+\frac{10}{3}\sqrt{x+3}}+\frac{x-6}{3\left(\sqrt{x+3}+3\right)}+\frac{2x^2+4x-6-9\left(x+4\right)}{\sqrt{2x^2+4x-6}+3\sqrt{x+4}}=0\)

Để đỡ rối ta đặt mấy cái mẫu \(\hept{\begin{cases}N=\sqrt{2x^2+6x-8}+\frac{10}{3}\sqrt{x+3}>0\\H=\sqrt{x+3}+3>0\\T=\sqrt{2x^2+4x-6}+3\sqrt{x+4}>0\end{cases}}\)

\(\Leftrightarrow\frac{18x^2-46x-372}{9N}+\frac{x-6}{3H}+\frac{2x^2-5x-42}{T}=0\)

\(\Leftrightarrow\left(x-6\right)\left(\frac{18x+62}{9N}+\frac{1}{3H}+\frac{2x+7}{T}\right)=0\)

Dễ  thấy: \(\forall x\ge1\) thì \(\frac{18x+62}{9N}+\frac{1}{3H}+\frac{2x+7}{T}>0\)

\(\Rightarrow x-6=0\Rightarrow x=6\) (thỏa mãn)

Bình luận (0)
ND
Xem chi tiết
KN
Xem chi tiết
TL
7 tháng 5 2020 lúc 20:16

\(4x^4+4x^3+x^2+3x\ge0\)

\(4x^4+4x^2+1-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)\sqrt{\left(x^2-x+1\right)\left(2x^2+1\right)+2x^4+6x^3-2x^3+4x-1}\)

\(\Leftrightarrow\left(2x^2+1\right)^2-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)\sqrt{\left(x^2-x+1\right)\left(2x^2+1\right)+2x^4+6x^3-2x^3+4x-1}\)

\(2x^2+1=u;\sqrt{4x^4+4x^3+x^2+3x}=v\left(u>0;v>0\right)\)

\(\hept{\begin{cases}u^2-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)v\\v^2-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)u\end{cases}\Rightarrow u^2-v^2=\left(x^2-x+1\right)\left(v-u\right)\Leftrightarrow\orbr{\begin{cases}u=v\\u+v+x^2-x+1=0\end{cases}}}\)

\(u+v+x^2-x+1=0\Leftrightarrow u+v+\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)\(u=v\Leftrightarrow4x^4+4x^2+1=4x^4+4x^3+x^2+3x\Leftrightarrow\left(x-1\right)^3=-3x^3\Leftrightarrow x-1=-x\sqrt[3]{3}\Leftrightarrow x=\frac{1}{1+\sqrt[3]{3}}\)Đối chiếu điều kiện ta thu được nghiệm duy nhất \(x=\frac{1}{1+\sqrt[3]{3}}\)
Bình luận (0)
 Khách vãng lai đã xóa
LG
Xem chi tiết
AH
24 tháng 8 2021 lúc 18:04

Lời giải:

a. Đề thiếu

b. PT $\Leftrightarrow \sqrt{(x-1)^2}+\sqrt{(x-2)^2}=3$

$\Leftrightarrow |x-1|+|x-2|=3$
Nếu $x\geq 2$ thì pt trở thành:
$x-1+x-2=3$

$\Leftrightarrow 2x-3=3$

$\Leftrightarrow x=3$ (tm)

Nếu $1\leq x< 2$ thì:

$x-1+2-x=3\Leftrightarrow 1=3$ (vô lý)

Nếu $x< 1$ thì:

$1-x+2-x=3$

$\Leftrightarrow x=0$ (tm)

Bình luận (0)
H24
Xem chi tiết
NT
5 tháng 2 2022 lúc 21:16

Bài 3: 

b: \(\Leftrightarrow x^2\left(x+1\right)^2=0\)

hay \(x\in\left\{0;-1\right\}\)

c: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=0\)

=>x-1=0

hay x=1

d: \(\Leftrightarrow6x^2-3x-4x+2=0\)

\(\Leftrightarrow\left(2x-1\right)\left(3x-2\right)=0\)

hay \(x\in\left\{\dfrac{1}{2};\dfrac{2}{3}\right\}\)

Bình luận (0)
LN
Xem chi tiết
NT
19 tháng 8 2021 lúc 22:06

1: Ta có: \(\dfrac{3}{x+2}-\dfrac{x-1}{x^2-4}=\dfrac{2}{x-2}\)

Suy ra: \(3x-6-x+1=2x+4\)

\(\Leftrightarrow2x-5=2x+4\left(vôlý\right)\)

2: Ta có: \(\dfrac{x-5}{2x-3}-\dfrac{x}{2x+3}=\dfrac{1-6x}{4x^2-9}\)

Suy ra: \(\left(x-5\right)\left(2x+3\right)-x\left(2x-3\right)=1-6x\)

\(\Leftrightarrow2x^2-7x-15-2x^2+6x+6x-1=0\)

\(\Leftrightarrow5x=16\)

hay \(x=\dfrac{16}{5}\)

Bình luận (0)