Tìm max, min:
\(P=x^2+4x+2xy+3y^2+5y+2017\)
\(Q=-x^2+4x-3y^2+6y+2017\)
Tìm max, min:
\(A=x^2+2xy-4y+2017\)
\(B=x^2-2x+2017\)
\(C=-4x^2+8xy-3y^2+y-2017\)
\(D=-2x^2+4x+2017\)
câu A thiếu đề
B=\(x^2-2x+2017=\left(x-1\right)^2+2016>=2016\)
Min B=2016 khi x-1=0<=>x=1
+)D=\(-2x^2+4x+2017=-2\left(x^2-2x+1\right)+2019=-2\left(x-1\right)^2+2019< =2019\)
=>Max D=2019, dấu '=' xảy ra khi x-1=0<=>x=1
\(A=x^2+2xy+3y^2-4y+2017\)
\(A=\left(x^2+2xy+y^2\right)+\left(2y^2-4y+2\right)+2015\)
\(A=\left(x^2+2xy+y^2\right)+2\left(y^2-2y+1\right)+2015\)
\(A=\left(x+y\right)^2+2\left(y-1\right)^2+2015\ge2015\)
Vậy Amin=2015 <=> x=-1 và y=1
Tìm Max, Min của các biểu thức:
A= |4x-3|+|5y+7,5|+17,5
B= |x-2|+|x-6|+2017 (Min)
C= 2020-|x+1|-|y-2| biết x+y=5
D= 2/3 + 21/ (x+3y)2 +5|x+5|+14
E= 27-2x / 12-x; x thuộc Z (MAX)
tìm min,max của \(A=\frac{4x+3}{x^2+1}\) và Max \(B=\frac{4Y^2}{X^2-2XY+3Y^2}\)
\(A=\frac{4x+3}{x^2+1}\)\(=\dfrac{x^2+4x+4-\left(x^2+1\right)}{x^2+1}\)\(=\dfrac{\left(x+2\right)^2}{x^2+1}-\dfrac{x^2+1}{x^2+1}\)\(\dfrac{\left(x+2\right)^2}{x^2+1}-1 \ge -1 \forall x \in \mathbb{R}\)
Dấu "=" xảy ra khi \(x+2=0\Leftrightarrow x=-2\)
Vậy \(A_{min}=-1\Leftrightarrow x=-2\)
\(A=\frac{4x+3}{x^2+1}\)\(=\dfrac{4\left(x^2+1\right)-\left(4x^2-4x+1\right)}{x^2+1}\)\(=4-\dfrac{(2x-1)^2}{x^2+1} \le 4 \forall x \in \mathbb{R}\)
Dấu "=" xảy ra khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\)
Vậy \(A_{max}=4\Leftrightarrow x=\frac{1}{2}\)
ĐKXĐ: \(x^2+y^2\ne0\)
\(B=\frac{4y^2}{x^2-2xy+y^2+2y^2}=\frac{4y^2}{\left(x-y\right)^2+2y^2}\) Đạt giá trị lớn nhất khi \(\left(x-y\right)^2+2y^2\) bé nhất \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y\ne0\end{matrix}\right.\)\(\Leftrightarrow x=y\ne0\)
\(\Rightarrow B_{Max}=\frac{4y^2}{2y^2}=2\)
Vậy \(B_{max}=2\Leftrightarrow x=y\ne0\)
1. Tìm min:
a, x2-x+1
b, 3x2+5x-2
c, x2+2y2-2xy-4y+5
d, x2+2y2+2xy-4x+2y+2017
e, 2x2+4y2-4xy-4x-4y+2003
2. Tìm max:
a, -x2+3x
b, -2x2+x-1
c, -x2-y2+xy+2x+2y
d, -5x2-2xy-2y2+14x+10y
e, -8x2-3y2-26x+6y+100
a ) \(x^2-x+1\)
\(\Leftrightarrow\left(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Vậy GTNN là \(\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}.\)
Tìm giá trị nhỏ nhất của biểu thức:
\(3y^2+x^2+2xy+2x+6y+2017\)
\(3y^2+x^2+2xy+2x+6y+2017=x^2+2x\left(y+1\right)+\left(y+1\right)^2+\left(2y^2+4y+2\right)+2014\)
\(=\left(x+y+1\right)^2+2\left(y+1\right)^2+2014\ge2014\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}x+y+1=0\\y+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=-1\end{cases}}\)
Vậy BT đạt GTNN bằng 2014 tại (x;y) = (0;-1)
Tìm Min
A= x2+3y2+2xy-3x+4y+10
B= x2+y22+xy-4x+6y+8
Tìm Max
A=5x-x2+13
Ta có : \(5x-x^2+13=-x^2+5x+13\)
\(=-\left(x^2-5x-13\right)\)
\(=-\left[x^2-2.x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2-\dfrac{25}{4}-13\right]\)
\(=-\left[\left(x-\dfrac{5}{2}\right)^2-\dfrac{77}{4}\right]\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{77}{4}\)
Do \(-\left(x-\dfrac{5}{2}\right)^2\le0\) với mọi x (dấu "=" xảy ra \(\Leftrightarrow x-\dfrac{5}{2}=0\Rightarrow x=\dfrac{5}{2}\))
\(\Rightarrow-\left(x-\dfrac{5}{2}\right)^2+\dfrac{77}{4}\le\dfrac{77}{4}\) hay \(A\le0\) (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\))
Vậy Max A=\(\dfrac{77}{4}\) tại x=\(\dfrac{5}{2}\)
Cho x, y thỏa mãn
\(7x^2+9y^2+12xy-4x-6y-15=0\)
Tìm Max; Min của S = 2x+3y+5
cho x;y thỏa mãn x2+2xy+4x+4y+3y2+3=0 tìm giá trị lớn và nhỏ nhất của B=x+y +2017
\(x^2+2xy+4x+4y+3y^2+3=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(4x+4y\right)+4+2y^2-1=0\)
\(\Leftrightarrow\left(x+y\right)^2+4\left(x+y\right)+4=1-2y^2\)
\(\Leftrightarrow\left(x+y+2\right)^2=1-2y^2\)
Do \(VP=1-2y^2\le1\forall y\) nên \(VT=\left(x+y+2\right)^2\le1\)
\(\Leftrightarrow-1\le x+y+2\le1\)
\(\Leftrightarrow-1+2015\le x+y+2+2015\le1+2015\)
\(\Leftrightarrow2014\le x+y+2017\le2016\)
Hay \(2014\le B\le2016\)
Bạn Đinh Đức Hùng cho tớ hỏi được không ạ ?
Cái chỗ do Vp = 1- 2y^2 nên ...
Bên trên là dương 1 sao ở đưới lại là -1 ạ? Tớ chưa hiểu chỗ này, mong cậu giảng cho tớ :< pls !
Tìm max:
\(A=-x^2-4x+16\)
\(B=-x^2+2xy-4y^2+2x+10y-2017\)
bạn xem trong danh sách câu trả lời của mình ấy, mình đã trả lời nhiều bài tương tự rồi