Những câu hỏi liên quan
VT
Xem chi tiết
H24
19 tháng 5 2017 lúc 21:30

câu A thiếu đề

B=\(x^2-2x+2017=\left(x-1\right)^2+2016>=2016\)

Min B=2016 khi x-1=0<=>x=1

+)D=\(-2x^2+4x+2017=-2\left(x^2-2x+1\right)+2019=-2\left(x-1\right)^2+2019< =2019\)

=>Max D=2019, dấu '=' xảy ra khi x-1=0<=>x=1

Bình luận (0)
VT
19 tháng 5 2017 lúc 21:40

Bổ sung câu A. \(A=x^2+2xy+3y^2-4y+2017\)

Bình luận (0)
TM
19 tháng 5 2017 lúc 23:52

\(A=x^2+2xy+3y^2-4y+2017\)

\(A=\left(x^2+2xy+y^2\right)+\left(2y^2-4y+2\right)+2015\)

\(A=\left(x^2+2xy+y^2\right)+2\left(y^2-2y+1\right)+2015\)

\(A=\left(x+y\right)^2+2\left(y-1\right)^2+2015\ge2015\)

Vậy Amin=2015 <=> x=-1 và y=1

Bình luận (0)
H24
Xem chi tiết
H24
23 tháng 1 2017 lúc 11:28

mk ko biết, nhìn hoi phức tạp nhỉ

Bình luận (0)
NN
Xem chi tiết
TN
12 tháng 4 2020 lúc 15:41

\(A=\frac{4x+3}{x^2+1}\)\(=\dfrac{x^2+4x+4-\left(x^2+1\right)}{x^2+1}\)\(=\dfrac{\left(x+2\right)^2}{x^2+1}-\dfrac{x^2+1}{x^2+1}\)\(\dfrac{\left(x+2\right)^2}{x^2+1}-1 \ge -1 \forall x \in \mathbb{R}\)

Dấu "=" xảy ra khi \(x+2=0\Leftrightarrow x=-2\)

Vậy \(A_{min}=-1\Leftrightarrow x=-2\)

\(A=\frac{4x+3}{x^2+1}\)\(=\dfrac{4\left(x^2+1\right)-\left(4x^2-4x+1\right)}{x^2+1}\)\(=4-\dfrac{(2x-1)^2}{x^2+1} \le 4 \forall x \in \mathbb{R}\)

Dấu "=" xảy ra khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\)

Vậy \(A_{max}=4\Leftrightarrow x=\frac{1}{2}\)

Bình luận (0)
TN
12 tháng 4 2020 lúc 15:56

ĐKXĐ: \(x^2+y^2\ne0\)

\(B=\frac{4y^2}{x^2-2xy+y^2+2y^2}=\frac{4y^2}{\left(x-y\right)^2+2y^2}\) Đạt giá trị lớn nhất khi \(\left(x-y\right)^2+2y^2\) bé nhất \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y\ne0\end{matrix}\right.\)\(\Leftrightarrow x=y\ne0\)

\(\Rightarrow B_{Max}=\frac{4y^2}{2y^2}=2\)

Vậy \(B_{max}=2\Leftrightarrow x=y\ne0\)

Bình luận (0)
NC
Xem chi tiết
VT
20 tháng 6 2017 lúc 9:43

a ) \(x^2-x+1\)

\(\Leftrightarrow\left(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Vậy GTNN là \(\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}.\)

Bình luận (1)
NH
Xem chi tiết
HN
10 tháng 12 2016 lúc 23:17

\(3y^2+x^2+2xy+2x+6y+2017=x^2+2x\left(y+1\right)+\left(y+1\right)^2+\left(2y^2+4y+2\right)+2014\)

\(=\left(x+y+1\right)^2+2\left(y+1\right)^2+2014\ge2014\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}x+y+1=0\\y+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=-1\end{cases}}\)

Vậy BT đạt GTNN bằng 2014 tại (x;y) = (0;-1)

Bình luận (0)
H24
Xem chi tiết
DN
12 tháng 8 2018 lúc 21:39

Ta có : \(5x-x^2+13=-x^2+5x+13\)

\(=-\left(x^2-5x-13\right)\)

\(=-\left[x^2-2.x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2-\dfrac{25}{4}-13\right]\)

\(=-\left[\left(x-\dfrac{5}{2}\right)^2-\dfrac{77}{4}\right]\)

\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{77}{4}\)

Do \(-\left(x-\dfrac{5}{2}\right)^2\le0\) với mọi x (dấu "=" xảy ra \(\Leftrightarrow x-\dfrac{5}{2}=0\Rightarrow x=\dfrac{5}{2}\))

\(\Rightarrow-\left(x-\dfrac{5}{2}\right)^2+\dfrac{77}{4}\le\dfrac{77}{4}\) hay \(A\le0\) (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\))

Vậy Max A=\(\dfrac{77}{4}\) tại x=\(\dfrac{5}{2}\)

Bình luận (1)
DS
Xem chi tiết
CD
Xem chi tiết
DH
9 tháng 12 2017 lúc 14:11

\(x^2+2xy+4x+4y+3y^2+3=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(4x+4y\right)+4+2y^2-1=0\)

\(\Leftrightarrow\left(x+y\right)^2+4\left(x+y\right)+4=1-2y^2\)

\(\Leftrightarrow\left(x+y+2\right)^2=1-2y^2\)

Do  \(VP=1-2y^2\le1\forall y\) nên \(VT=\left(x+y+2\right)^2\le1\)

\(\Leftrightarrow-1\le x+y+2\le1\)

\(\Leftrightarrow-1+2015\le x+y+2+2015\le1+2015\)

\(\Leftrightarrow2014\le x+y+2017\le2016\)

Hay \(2014\le B\le2016\)

Bình luận (0)
TT
24 tháng 12 2017 lúc 16:32

Bạn Đinh Đức Hùng cho tớ hỏi được không ạ ?

Cái chỗ do Vp = 1- 2y^2 nên ...

Bên trên là dương 1 sao ở đưới lại là -1 ạ? Tớ chưa hiểu chỗ này, mong cậu giảng cho tớ :< pls !

Bình luận (0)
NH
14 tháng 3 2018 lúc 0:10

Chuyển vế nhé bạn Tầm Tầm

Bình luận (0)
DH
Xem chi tiết
TM
17 tháng 6 2017 lúc 11:18

bạn xem trong danh sách câu trả lời của mình ấy, mình đã trả lời nhiều bài tương tự rồi

Bình luận (0)