Những câu hỏi liên quan
NN
Xem chi tiết
ND
Xem chi tiết
LQ
1 tháng 11 2015 lúc 22:24

Gọi 2 số đó là 7q + b và 7k + b (Vì 2 số này có cùng số dư)

Theo bài ra, ta có hiệu:

(7q + b) - (7k + b)

= (7q - 7k) + (b - b)

= 7(q - k) chia hết cho 7 hay 2 số có cùng số dư khi chia cho 7 thì chia hết cho 7

 

Bình luận (0)
NG
21 tháng 10 2016 lúc 18:57

đúng lắm !!! tớ cho cậu đó

Bình luận (0)
DA
Xem chi tiết
NT
30 tháng 6 2018 lúc 12:06

A) Gọi số dư của hai số đó là N ( N khác 0 ; N nhỏ hơn 7 )

    Gọi 2 số đó là 7A và 7B ( A , B khác 0 ; A>B )

Ta có : ( 7A + N ) : 7 ( dư N )

           ( 7B + N ) : 7 ( dư N )

=> ( 7A + N ) - ( 7B + N ) 

=  7A - 7B

= 7 . ( A - B ) chia hết cho 7

Vậy 2 số khi chia cho 7 có cùng số dư thì hiệu của chúng chia hết cho 7 .

B) Theo đề ta có : 3 chỉ có 2 số dư là 1 hoặc 2

    Gọi 2 số đó là 3k+1 và 3h+2 

Ta có : 3k+1 : 3 ( dư 1 )

            3h+2 : 3 ( dư 2 )

=> ( 3k+1 ) + ( 3h+2 )

= 3k+ 3h + 3

= 3 . ( k + h + 1 )

Vậy 2 số không chia hết cho 3 mà có số dư khác nhau thì tổng của chúng chia hết cho 3

Đọc thì nhớ tk nhá

Bình luận (0)
NK
Xem chi tiết
RR
13 tháng 10 2014 lúc 17:02

gọi hai số đó  là s  và y

cho s:7= a+b (với a;b thuộc Z và a chia hết cho 7)

Và y:7=c+b  (với c thuộc Z và c chia hết cho 7)

khi đó s-y= (a+b)-(c+b)=a+b-c-b=a-c

Mà a chia hết cho 7 và c chia hết cho 7

Vậy a-c chia hết cho 7

Vậy s-y chia hết cho 7

Bình luận (0)
DT
6 tháng 5 2015 lúc 16:19

gọi số thứ nhất là a, số thứ hai là b, thương của số thứ nhất với 7 là c, thương của số thứ hai với 7 là d, số dư của hai số đó khi chia cho 7 là k. 

giả sử a > b => c>d .

ta có : a =7c+k;b=7d+k=>a-b=(7c+k)-(7d+k)=7c-7d=7(c-d) mà c>d; c,d đều là số nguyên Nên: 7(c-d) luôn chia hết cho 7

=>a-b chia hết cho 7 (đpcm)

Bình luận (0)
LU
11 tháng 2 2016 lúc 21:56

Gọi 2 số cùng số dư khi chia cho 7 là a;b(a,b thuộc Z) 
Gọi a/7=q+k(K là số dư q là thương) 
Gọi b/7=p+k(p là thương, k là số dư) 
suy ra a/7-b/7=q -- p 
=>(a-b)/7 = q -- p 
=>a-b = (q -- p) X7 
có (q -- p) X 7chia hết cho 7 
suy ra a-b chia hết cho 7

Bình luận (0)
AB
Xem chi tiết
LL
23 tháng 9 2021 lúc 10:33

Gọi 2 số đó là a và b và d là số dư khi chia a cho 7 và chia b cho 7

\(\Rightarrow\left\{{}\begin{matrix}a=7k+d\\b=7n+d\end{matrix}\right.\) \(\left(k,n\in Z\right)\)

\(\Rightarrow a-b=7k+d-7n-d=7\left(k-n\right)⋮7\left(đpcm\right)\)

 

Bình luận (0)
H24
23 tháng 9 2021 lúc 10:33

Kham khảo nhé:


Bình luận (1)
VG
Xem chi tiết
HH
17 tháng 7 2017 lúc 10:04

gọi a và b là hai số có cùng số dư là r khi chia cho 7 (giả sử a > hoặc bằng b)

ta có:a=7m+r,b=7n+r(m,m thuộc N)

khi đó a-b=(7m+r)-(7n-r)=7m-7n chia hết cho 7

Bình luận (0)
ND
Xem chi tiết
DH
20 tháng 10 2016 lúc 8:31

Gọi a và b là 2 số có cùng số dư khi chia cho 7 (giả sử a\(\ge\)b)

Ta có a=7m +r ; b=7n +r (m ; n \(\in\)N)

Khi đó a-b = ( 7m - r ) - ( 7n - r ) = 7m - 7n \(⋮\)7 (điều phải chứng minh)

Bình luận (0)
TT
Xem chi tiết
DD
6 tháng 10 2016 lúc 10:38

\(\text{ Gọi 2 số cùng số dư khi chia cho 7 là a;b(a,b thuộc Z) }\)

\(\text{Gọi a/7=q+k(K là số dư q là thương) }\)


\(\text{Gọi b/7=p+k(p là thương, k là số dư) }\)

\(\text{suy ra a/7-b/7=q -- p }\)

\(\text{(a-b)/7 = q -- p }\)

\(\text{a-b = (q -- p) X7 }\)

\(\text{có (q -- p) X 7chia hết cho 7 suy ra a-b chia hết cho 7 }\)

Bình luận (0)
PH
7 tháng 10 2016 lúc 21:37

Gọi hai số đó là a,b,r là số dư khi chia cho 7(10<a,b<0. a,b thuộc N) . Giả sử a > hoặc=b

Theo bài ra ta có :

a=7m+r,b=7n+r(m,n thuộc N)

Khi đó a-b=(7m+r)-(7n+r)=7m-7n

Vì 7 chia hết cho 7 nên 7m,7n cũng chia hết cho 7.Vậy 7m-7n chia hết cho 7

Bình luận (0)
TH
8 tháng 10 2017 lúc 21:05

a-b chia hết cho7

Bình luận (0)
H24
Xem chi tiết
H24
22 tháng 10 2017 lúc 7:30

ta có :

a : 7 = q dư c

b : 7 = d dư c

a=(7.q)+c

b=(7.d)+c

a-b =( 7 . q ) + c - ( 7 . d ) + c

a-b=7.q-7.d

a-b=7.(q-d)

=> a-b chia hết cho 7

cũng có thể là b-alàm tương tự

Bình luận (0)
TH
22 tháng 10 2017 lúc 7:31

Gọi hai số đó là 7k+a và 7m+a (do 2 số đó có cùng số dư khi chia cho bảy)

7k+a -7m+a =7k-7m=7.(k-m) 

là số chia hết cho bảy

Bình luận (0)