Những câu hỏi liên quan
NP
Xem chi tiết
T2
Xem chi tiết
TH
Xem chi tiết
DL
16 tháng 6 2016 lúc 18:05

\(\frac{x}{1998}=\frac{y}{1999}=\frac{z}{2000}=t=\frac{x-z}{1998-2000}=\frac{x-y}{1998-1999}=\frac{y-z}{1999-2000}.\)

Hay: \(\frac{x-z}{-2}=\frac{x-y}{-1}=\frac{y-z}{-1}\Rightarrow x-z=2\left(x-y\right)=2\left(y-z\right)\)(1)

a) \(\left(x-z\right)^3=\left(x-z\right)^2\left(x-z\right)=\left(2\left(x-y\right)\right)^2\left(2\left(y-z\right)\right)\)

\(\Leftrightarrow\left(x-z\right)^3=8\left(x-y\right)^2\left(y-z\right)\)ĐPCM a)

b) Từ (1) => x + z = 2y 

Để \(2\left(x+y\right)=5\left(y+z\right)=3\left(z+x\right)\Rightarrow\frac{x+y}{\frac{1}{2}}=\frac{y+z}{\frac{1}{5}}=\frac{z+x}{\frac{1}{3}}\)

Từ \(\Rightarrow\frac{x+y}{\frac{1}{2}}=\frac{y+z}{\frac{1}{5}}=\frac{x+y+y+z}{\frac{1}{2}+\frac{1}{5}}=\frac{4y}{\frac{7}{10}}=\frac{2y}{\frac{1}{3}}\)

=>y=0 =>x=0 => z=0 Suy ra hệ thức: x-y/4=y-z/5 luôn đúng. ĐPCM

Bình luận (0)
TH
17 tháng 6 2016 lúc 11:08

Bạn đinh thùy linh trả lời rõ ràng hơn được ko 

Bình luận (0)
PT
26 tháng 10 2019 lúc 8:50

Đinh Thùy Linh trả lời sai

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
VG
Xem chi tiết
NL
25 tháng 3 2023 lúc 21:54

Theo nguyên lý Dirichlet, trong 3 số \(x^2;y^2;z^2\) luôn có ít nhất 2 số cùng phía so với 1

Không mất tính tổng quát, giả sử đó là \(x^2\) và \(y^2\)

\(\Rightarrow\left(x^2-1\right)\left(y^2-1\right)\ge0\)

\(\Leftrightarrow x^2y^2+1\ge x^2+y^2\)

\(\Leftrightarrow x^2y^2+5x^2+5y^2+25\ge6x^2+6y^2+24\)

\(\Leftrightarrow\left(x^2+5\right)\left(y^2+5\right)\ge6\left(x^2+y^2+4\right)\)

\(\Rightarrow\left(x^2+5\right)\left(y^2+5\right)\left(z^2+5\right)\ge6\left(x^2+y^2+4\right)\left(z^2+5\right)\)

\(=6\left(x^2+y^2+1+3\right)\left(1+1+z^2+3\right)\)

\(\ge6\left(x+y+z+3\right)^2\)

Dấu "=" xảy ra khi \(x=y=z=1\)

Bình luận (0)
ND
Xem chi tiết
TL
17 tháng 10 2015 lúc 15:47

Từ 2.(x + y)= 5(y + z) = 3(z + x) => \(\frac{2\left(x+y\right)}{30}=\frac{5\left(y+z\right)}{30}=\frac{3\left(z+x\right)}{30}\) => \(\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}\)

Áp dụng t/c của dãy tỉ số bằng nhau ta có: \(\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}=\frac{\left(x+z\right)-\left(y+z\right)}{10-6}=\frac{\left(x+y\right)-\left(z+x\right)}{15-10}\)

=> \(\frac{x-y}{4}=\frac{y-z}{5}\) => \(\frac{x-y}{y-z}=\frac{4}{5}\)

Vậy...

Bình luận (0)
AH
Xem chi tiết
ZZ
2 tháng 9 2019 lúc 20:30

Ta có:

\(x+y+z=0\)

\(\Rightarrow x+y=-z\)

\(\Rightarrow\left(x+y\right)^3=\left(-z\right)^3\)

\(\Rightarrow x^3+y^3+3xy\left(x+y\right)=-z^3\)

\(\Rightarrow x^3+y^3+z^3=3xyz\)

\(\Rightarrow5\left(x^3+y^3+z^3\right)\left(x^2+y^2+z^2\right)=15xyz\left(x^2+y^2+z^2\right)\)

Mặt khác:

\(x+y+z=0\)

\(\Rightarrow x+y=-z\)

\(\Rightarrow x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5=-z^5\)

\(\Rightarrow x^5+y^5+z^5+5xy\left(x^3+2x^2y+2xy^2+y^3\right)=0\)

\(\Rightarrow x^5+y^5+z^5+\left[\left(x+y\right)\left(x^2-xy+y^2\right)+2xy\left(x+y\right)\right]=0\)

\(\Rightarrow x^5+y^5+z^5+\left(x+y\right)\left(x^2+xy+y^2\right)=0\)

\(\Rightarrow x^5+y^5+z^5-5xyz\left(x^2+xy+y^2\right)=0\)

\(\Rightarrow2\left(x^5+y^5+z^5\right)-5xyz\left[\left(x^2+2xy+y^2\right)+x^2+y^2\right]=0\)

\(\Rightarrow2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)

Khi đó:\(6\left(x^5+y^5+z^5\right)=15xyz\left(x^2+y^2+z^2\right)=VT\)

\(\Rightarrowđpcm\)

Bình luận (0)
AH
2 tháng 9 2019 lúc 21:44

zZz Cool Kid zZz mình chưa hiểu lắm

Bn giải rõ ra dc ko

Bình luận (0)
NT
Xem chi tiết
KK
14 tháng 1 2017 lúc 11:18

Ta có \(2\left(x+y\right)=5\left(y+z\right)=3\left(z+x\right)\)

\(\Leftrightarrow\frac{2\left(x+y\right)}{30}=\frac{5\left(y+z\right)}{30}=\frac{3\left(x+z\right)}{30}\)

\(\Rightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}\)

Xét \(\frac{z+x}{10}=\frac{y+z}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{z+x}{10}=\frac{y+z}{6}=\frac{\left(z+x\right)-\left(y+z\right)}{4}=\frac{x-y}{4}\) (1)

Xét \(\frac{x+y}{15}=\frac{z+x}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x+y}{15}=\frac{z+x}{10}=\frac{\left(x+y\right)-\left(z+x\right)}{5}=\frac{y-z}{5}\) (2)

Từ (1) và (2)

\(\Rightarrow\frac{x-y}{4}=\frac{y-z}{5}\)

Bình luận (1)
LP
22 tháng 1 2019 lúc 17:33

Hỏi đáp Toán

Bình luận (0)
LL
Xem chi tiết
H24
7 tháng 3 2018 lúc 18:12

Ta có: \(2\left(x+y\right)=5\left(y+z\right)=3\left(z+x\right)\)

\(\Rightarrow\frac{2\left(x+y\right)}{30}=\frac{5\left(y+z\right)}{30}=\frac{3\left(z+x\right)}{30}\)

\(\Rightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}=\frac{x+y-z-x}{15-10}=\frac{z+x-y-z}{10-6}=\frac{y-z}{5}=\frac{x-y}{4}\left(đpcm\right)\)

Bình luận (0)
LT
7 tháng 3 2018 lúc 18:19

Ta có: \(2\left(x+y\right)=5\left(y+z\right)=3\left(x+z\right)\Rightarrow\frac{2\left(x+y\right)}{30}=\frac{5\left(y+z\right)}{30}=\frac{3\left(x+z\right)}{30}\)

\(\Rightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{x+z}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x+y}{15}=\frac{y+z}{6}=\frac{x+z}{10}=\frac{x+z-y-z}{10-6}=\frac{x+y-x-z}{15-10}=\frac{x-y}{4}=\frac{y-z}{5}\left(đpcm\right)\)

Bình luận (0)
H24
7 tháng 3 2018 lúc 18:30

Ta có: \(2\left(x+y\right)=5\left(y+z\right)=3\left(z+x\right)\)

\(\Leftrightarrow\frac{2\left(x+y\right)}{30}=\frac{5\left(y+z\right)}{30}=\frac{3\left(z+x\right)}{30}\Rightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+y}{10}\)

Áp dụng tính chất tỉ dãy số bằng nhau. Ta có:

\(\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}=\frac{x+y-z-x}{10-6}=\frac{x+y-x-z}{15-10}=\frac{x-y}{4}=\frac{y-z}{5}\)  (*)

Từ (*), ta suy ra được ĐPCM

Bình luận (0)