Chứng minh rằng: x2 + y2 + 6 > 4x + 2y
Chứng minh rằng không có các số x, y thỏa mãn
a) 2x2 +2x +1 = 0
b) x2 + y2 + 2xy +2y +2x +2 =0
a: \(2x^2+2x+1=0\)
\(\text{Δ}=2^2-4\cdot2\cdot1=4-8=-4< 0\)
Vì Δ<0 nên phương trình vô nghiệm
a) \(2x^2+2x+1=0\)
\(\Rightarrow2x^2+2x=-1\)
\(\Rightarrow2x\left(x+1\right)=-1\)
⇒ Pt vô nghiệm
b) \(x^2+y^2+2xy+2x+2y+1=0\)
\(\Rightarrow\left(x^2+y^2+2xy\right)+\left(2x+2y+1\right)=0\)
\(\Rightarrow\left(x+y\right)^2+2\left(x+y+1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x+y\right)^2=0\\2\left(x+y+1\right)=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=0\\x+y+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+y=0\\x+y=-1\end{matrix}\right.\)
⇒ Pt vô nghiệm
Câu 6. Cho đường tròn x2 + y2 +4x -6y +7 = 0 và M(-1; 1). Chứng minh rằng M nằm nằm trong đường tròn.Lập phương trình dây cung đi qua M và có độ dài ngắn nhất.
Tìm xy thõa mãn:
x2+3y2-4x+6y+7=0
3x2+y2+10x-2xy+26=0
3x2+6x2-12x-20y+40=0
Cho xy thõa mãn 2(x2+y2)=(x+y)2.Chứng minh rằng x=-y
\(x^2+3y^2-4x+6y+7=0\\ \Leftrightarrow\left(x^2-4x+4\right)+\left(3y^2+6y+3\right)=0\\ \Leftrightarrow\left(x-2\right)^2+3\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
\(3x^2+y^2+10x-2xy+26=0\\ \Leftrightarrow\left(x^2-2xy+y^2\right)+\left(2x^2+10x+\dfrac{25}{8}\right)+\dfrac{183}{8}=0\\ \Leftrightarrow\left(x-y\right)^2+2\left(x^2+2\cdot\dfrac{5}{2}x+\dfrac{25}{4}\right)+\dfrac{183}{8}=0\\ \Leftrightarrow\left(x-y\right)^2+2\left(x+\dfrac{5}{2}\right)^2+\dfrac{183}{8}=0\\ \Leftrightarrow x,y\in\varnothing\)
Sửa đề: \(3x^2+6y^2-12x-20y+40=0\)
\(\Leftrightarrow\left(3x^2-12x+12\right)+\left(6y^2-20y+\dfrac{50}{3}\right)+\dfrac{34}{3}=0\\ \Leftrightarrow3\left(x-2\right)^2+6\left(y^2-2\cdot\dfrac{5}{3}y+\dfrac{25}{9}\right)+\dfrac{34}{3}=0\\ \Leftrightarrow3\left(x-2\right)^2+6\left(y-\dfrac{5}{3}\right)^2+\dfrac{34}{3}=0\\ \Leftrightarrow x,y\in\varnothing\)
\(2\left(x^2+y^2\right)=\left(x+y\right)^2\\ \Leftrightarrow2x^2+2y^2=x^2+2xy+y^2\\ \Leftrightarrow x^2-2xy+y^2=0\\ \Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow x-y=0\Leftrightarrow x=y\)
Tìm xy thõa mãn:
x2+3y2-4x+6y+7=0
3x2+y2+10x-2xy+26=0
3x2+6x2-12x-20y+40=0
Cho xy thõa mãn 2(x2+y2)=(x+y)2.Chứng minh rằng x=-y
cho ba số dương x, y , z thoả mãn x+y+z=3/4 chứng minh rằng
6(x2+y2+z2)+10(xy+yz+xz)+2(1/(2x+y+z)+1/(x+2y+z)+1/(x+y+2z))>=9
\(VT=6\left(x^2+y^2+z^2\right)+10\left(xy+yz+xz\right)+2\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)
\(=6\left(x+y+z\right)^2-2\left(xy+yz+xz\right)+2\frac{9}{2x+y+z+x+2y+z+x+y+2z}\)
\(\ge6\left(x+y+z\right)^2-2\frac{\left(x+y+z\right)^2}{3}+2\frac{9}{4\left(x+y+z\right)}\)
\(=\: 6\cdot\left(\frac{3}{4}\right)^2-2\cdot\frac{\left(\frac{3}{4}\right)^2}{3}+2\cdot\frac{9}{4\cdot\frac{3}{4}}=9\)
cho x/z = z/y. chứng minh rằng (x2 + z2)/(y2 + z2) = x/ycho x/z = z/y. chứng minh rằng (x2 + z2)/(y2 + z2) = x/y
Xét các số thực x, y thỏa mãn
√x2+y2+4x−2y+5+√x2+y2−8x−14y+65=6√2
Gọi m và M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của biểu thức T=x2+y2−2x+2y+2.Tính P = m + M
Bạn tham khảo nhé!
Câu hỏi của Lê VĂn Chượng - Toán lớp 10 - Học toán với OnlineMath
Chứng minh rằng biểu thức sau luôn luôn dương với mọi x,y
B=x2-2x+y2+4y+6
\(B=x^2-2x+y^2+4y+6=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)
\(B=x^2-2x+y^2+4y+6\)
\(=x^2-2x+1+y^2+4y+4+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)
cho hình thang cân , đáy nhỏ AB đáy lớn CD . Góc nhọn hợp từ hai đường chéo AC và BD bằng \(60^o\)gọi M,N là hình chiếu của B và C lên AC và BD , p là trung điểm cạnh BC . Cm tam giác MNP là tam giác đều
Với x, y thuộc R, chứng minh x2 + yy2 + 6> 4x + 2y
Ta có: \(x^2+y^2+6>4x+2y\)
\(\Leftrightarrow x^2+y^2+6-4x-2y>0\)
\(\Leftrightarrow x^2-4x+4+y^2-2y+1+1>0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y-1\right)^2+1>0\)(*)
mà \(\left(x-2\right)^2\ge0;\left(y-1\right)^2\ge0;1>0\)
=> (*) đúng
=> \(x^2+y^2+6>4x+2y\)
Trong không gian Oxyz, cho mặt cầu (S): x 2 + y 2 + z 2 - 2x + 4y + 2z - 19 = 0 và mặt phẳng (P): x - 2y + 2z - 12 = 0. Chứng minh rằng (P) cắt (S) theo một đường tròn.
Mặt cầu (S) tâm I(1; -2; -1) bán kính R = 5
d(I,(P)) = 3 < R
Do đó (P) cắt (S) theo một đường tròn, gọi đường tròn đó là (C).