Những câu hỏi liên quan
DH
Xem chi tiết
NL
26 tháng 3 2019 lúc 21:33

\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{101}{3^{101}}\) (1)

\(\Rightarrow\frac{1}{3}A=\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+...+\frac{100}{3^{101}}+\frac{101}{3^{102}}\) (2)

Trừ (1) cho (2):

\(\frac{2}{3}A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{101}}-\frac{101}{3^{102}}=B-\frac{101}{3^{102}}\)

\(B=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{101}}\)

\(\Rightarrow\frac{1}{3}B=\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{101}}+\frac{1}{3^{102}}\)

\(\Rightarrow\frac{1}{3}B+\frac{1}{3}-\frac{1}{3^{102}}=\frac{1}{3}+\frac{1}{3^2}+..+\frac{1}{3^{101}}=B\)

\(\Rightarrow\frac{2}{3}B=\frac{1}{3}-\frac{1}{3^{102}}\Rightarrow B=\frac{1}{2}\left(1-\frac{1}{3^{101}}\right)=\frac{1}{2}-\frac{1}{2.3^{101}}\Rightarrow B< \frac{1}{2}\)

\(\Rightarrow A=\frac{3}{2}\left(B-\frac{101}{3^{102}}\right)< \frac{3}{2}B< \frac{3}{2}.\frac{1}{2}=\frac{3}{4}\)

Bình luận (0)
NT
Xem chi tiết
HM
Xem chi tiết
HM
14 tháng 4 2019 lúc 21:07

giúp mình với các bạn

Bình luận (0)
H24
14 tháng 4 2019 lúc 21:15

Bạn vào đường link này nhé:https://h.vn/hoi-dap/question/175023.html

_Hok tốt_

Bình luận (0)
HM
14 tháng 4 2019 lúc 21:24

bạn nào giải giúp mình với

Bình luận (0)
TN
Xem chi tiết
LK
Xem chi tiết
NH
Xem chi tiết
VA
Xem chi tiết
LA
Xem chi tiết
PD
Xem chi tiết
H24
4 tháng 10 2022 lúc 20:58

ai bt tự làm

 

Bình luận (0)
DM
15 tháng 4 2023 lúc 15:33

ngu tự chịu

Bình luận (0)
KK
14 tháng 10 2024 lúc 5:54

Triệt tiêu hết mấy số kia rồi á bạn

Bình luận (0)