So sánh:
a) (0,6)^9 và (-0,9)^2
b) 31^5 và 17^7
so sánh
D 12/13 và 1212/1313
E 4/5 và 10/9
F 17/15 và 31/29
a/\(\frac{1212}{1313}=\frac{12x101}{13x101}=\frac{12}{13}\)
Vậy \(\frac{12}{13}=\frac{1212}{1313}\)
b/Ta có:
\(\frac{4}{5}< 1\)
\(\frac{10}{9}>1\)
=>\(\frac{4}{5}< 1< \frac{10}{9}\Rightarrow\frac{4}{5}< \frac{10}{9}\)
c/\(\frac{17}{15}=1+\frac{2}{15}\)
\(\frac{31}{29}=1+\frac{2}{29}\)
Vì \(\frac{2}{15}>\frac{2}{29}\) nên \(\frac{17}{15}>\frac{31}{29}\)
-------------
chú ý: dấu "=>" có nghĩa là "suy ra"
d là =
e là 4/5<10/9
f là 17/15>31/29
Bài 1:So Sánh
a)3^12 và 5^8 b (0,6)^9 và (-0,9)^6
Bài 2:
a)31^5 và 17^7 b)8^12 và 12^8
`@` `\text {Ans}`
`\downarrow`
`1,`
`a)`
`3^12` và `5^8`
\(3^{12}=\left(3^3\right)^4=9^4\)
\(5^8=\left(5^2\right)^4=25^4\)
Vì `9 < 25` `=> 25^4 > 9^4`
`=> 3^12 > 5^8`
Vậy, `3^12 > 5^8`
`b)`
`(0,6)^9` và `(-0,9)^6`
\(\left(0,6\right)^9=\left(0,6^3\right)^3=\left(0,216\right)^3\)
\(\left(-0,9\right)^6=\left[\left(-0,9\right)^2\right]^3=\left(0,81\right)^3\)
Vì `0,81 > 0,216 => (0,81)^3 > (0,216)^3`
`=> (0,6)^9 < (-0,9)^6`
Vậy, `(0,6)^9<(-0,9)^6`
1.a) Có 312 = 33.4 = 274 ;
58 = 52.4 = 254
Dễ thấy 274 > 254 nên 312 > 58
b) Có \(0,6^9=\dfrac{6^9}{10^9}=\dfrac{6^{3.3}}{10^9}=\dfrac{216^3}{10^9}\)
mà \(\left(-0,9\right)^6=0,9^6=\dfrac{9^6}{10^6}=\dfrac{9^6.10^3}{10^9}=\dfrac{9^{2.3}.10^3}{10^9}=\dfrac{81^3.10^3}{10^9}=\dfrac{810^3}{10^9}\)
Dễ thấy \(\dfrac{216^3}{10^9}< \dfrac{810^3}{10^9}\Rightarrow0,6^9< \left(-0,9\right)^6\)
`2,`
`a)`
`31^5` và `17^7`
`31^5 < 32^5 = (2^5)^5 = 2^25`
`17^7 > 16^7 = (2^4)^7 = 2^28`
Vì `28 > 25 => 2^28 > 2^25`
`=> 31^5 < 17^7`
Vậy, `31^5 < 17^7`
`b)`
`8^12` và `12^8`
`8^12 = (8^3)^4 = 512^4`
`12^8 = (12^2)^4 = 144^4`
Vì `512 > 144 => 512^4 > 144^4`
`=> 12^8 < 8^12`
Vậy, `12^8 < 8^12.`
so sánh
A 7/12 và 5/12
B 2/5 và 7/25
C 9/11 và 9/24
a 7/12 lớn hơn
b 2/5 lớn hơn
c 9/11 lớn hơn
A) Vì 7> 5 nên 7/12> 5/12
b) Ta có 2/5= 10/25
Vì 10> 7 nên 10/25>7/25
Vậy 2/5>7/25
c)Vì 24> 11 nên 9/11> 9/24
1. A = 5+5^3+5^5+...+5^99
A có chia hết cho 13 không?
2. B = 1+5+5^2+...+5^98
Chứng minh B chia hết cho 31
3. So sánh
a. 2^25 và 3^16
b. 2^150 và 3^100
c. 2^10 + 3^20 + 4^30 và 3.4^10
d. 1000^3 và 2^30
e. 1990^10+1990^9 và 1991^10
f. 63^7 và 16^12
g. (1/32)^7 và (1/16)^9
h. 3^39 và 11^21
2.B=1+5+5^2+...+5^98
B=1+5^2+5^3+...+5^96+5^97+5^98
B=(1+5+5^2)+(5^3+5^4+5^5)+...+(5^96+5^97+5^98)
B=(1+5+25)+5^3.(1+5+25)+...+5^96.(1+5+25)
B=31+5^3.31`+...+5^96.31
B=(1+5^3+...+5^98).31.Suy ra B chia hết cho 31.
So sánh
a) 528 vàva 2614
b) 421 và 647
c) 3111 và 1714
d) 321 và 231
e) 32n và 23n(n€ n)
Ai nhanh và trình bày lời giải đầy đủ mình sẽ tích 5 tích nhé
b) \(64^7=\left(4^3\right)^7=4^{21}\)
Vậy \(4^{21}=64^7\)
a) 528 và 2614
528 = (52)14
(52)14 = 2514
Vì 2514 < 2614 nên 528 < 2614
b) 421 và 647
647 = (43)7 = 421 = 421
Vậy 421 = 647
c) 3111 và 1714
3111 < 3211 = (25)11 = 255
1714 > 1614 = (24)14 = 256
Vì 3111 < 255 < 256 < 1714 nên 3111 < 1714
d) 321 và 231
321 = 3x320 = 3x(32)10 = 3x910
231 = 2x230 = 2x(23)10 = 2x810
3x910 = 3x10x810 = 30x810
=> 321 > 231
e) 32n và 23n
32n = (32)n = 9n
23n = (23)n = 8n
=> 32n > 23n
1.a)Chứng minh rằng
7^100-7^99+7^ 98 chia hết cho 43
b)So sánh
5^31 và 2^62
7^100-7^99+7^98
=7^98(7^2-7+1)
=7^98.43 chia hết cho 43
b) ta có 2^62=(2^2)^31=4^31
vì 4^31<5^31=>2^62<5^31
So sánh :
a. 7 và √37 + 1
b. √2017 - √2016 và √2018 - √2017
c. (30 - 2√45 ) / 4 và √17Câu a : Cộng 2 vế cho 6 ta được :
\(7+6......7+\sqrt{37}\)
Mà : \(6=\sqrt{36}< \sqrt{37}\)
\(\Rightarrow7+6< \sqrt{37}+1\)
\(\Rightarrow7< \sqrt{37}+1\)
Cách khác của câu a.
Ta có : \(\sqrt{37}>\sqrt{36}=6\)
\(\Rightarrow\sqrt{37}+1>6+1=7\)
Vậy \(\sqrt{37}+1>7\)
Với các số \(a,b>0,a\ne b\) ,ta có:
\(\dfrac{\sqrt{a}+\sqrt{b}}{2}< \sqrt{\dfrac{a+b}{2}}\) (1)
Theo (1), ta có :
\(\dfrac{\sqrt{2016}+\sqrt{2018}}{2}< \sqrt{2017}\)
\(\Rightarrow\sqrt{2016}+\sqrt{2018}< \sqrt{2017}+\sqrt{2017}\)
\(\Rightarrow\sqrt{2018}-\sqrt{2017}< \sqrt{2017}-\sqrt{2016}\)
Vậy ...
1. so sánh
a, 5^217 và 119^72
c, 9^12 và 27^7
b, 125^80 và 25^118
so sánh
17/15 và 31/29
\(\frac{17}{15}=\frac{493}{435};\frac{31}{29}=\frac{465}{435};493>465=>\frac{17}{15}>\frac{31}{29}\)
\(\frac{17}{15}\)>\(\frac{31}{29}\)
Ta có 17/15 = 663/435
và 31/29 = 465/435
Vì 663/435 > 465/435
Do đó: 17/15> 31/29