Những câu hỏi liên quan
HD
Xem chi tiết
TN
29 tháng 10 2019 lúc 20:38

Nhân liên hợp rồi rút gọn thì ta sẽ ra. Tôi nghĩ vậy

Bình luận (0)
 Khách vãng lai đã xóa
DB
Xem chi tiết
2T
12 tháng 8 2019 lúc 16:53

\(\sqrt{\frac{-6}{1+x}}=5\)

\(\Leftrightarrow\sqrt{\frac{-6}{1+x}}^2=5^2\)

\(\Leftrightarrow\frac{-6}{1+x}=25\)

\(\Leftrightarrow x+1=\frac{-6}{25}\)

\(\Leftrightarrow x=\frac{-6}{25}-1=\frac{-31}{25}\)

Bình luận (0)
2T
12 tháng 8 2019 lúc 16:55

\(\sqrt{\left(\sqrt{x}-7\right)\left(\sqrt{x}+7\right)}=2\)

\(\Leftrightarrow\sqrt{x-49}=2\)

\(\Leftrightarrow x-49=4\Leftrightarrow x=53\)

Bình luận (0)
2T
12 tháng 8 2019 lúc 16:56

\(\sqrt{\frac{1}{4}-2a}=3\)

\(\Leftrightarrow\frac{1}{4}-2a=9\)

\(\Leftrightarrow2a=\frac{1}{4}-\frac{36}{4}\)

\(\Leftrightarrow2a=\frac{-35}{4}\)

\(\Leftrightarrow a=\frac{-35}{8}\)

Bình luận (0)
HK
Xem chi tiết
NN
8 tháng 9 2018 lúc 20:33

cái này nhân trên tử một lượng giống hệt mẫu là ra hằng đẳng thức e nhé

Bình luận (0)
HK
8 tháng 9 2018 lúc 20:44

ý bạn là sao ?

Bình luận (0)
HK
8 tháng 9 2018 lúc 21:06

bạn trình bày ra được ko

Bình luận (0)
LH
Xem chi tiết
LH
Xem chi tiết
H24
Xem chi tiết
TN
9 tháng 9 2017 lúc 11:28

CÁi  này easy mà .-.

\(\frac{\sqrt[3]{7-x}-\sqrt[3]{x-5}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}=6-x\)

\(\Leftrightarrow\frac{\frac{\left(7-x\right)-\left(x-5\right)}{\left(\sqrt[3]{7-x}\right)^2+\left(\sqrt[3]{x-5}\right)^2+\sqrt[3]{7-x}\sqrt[3]{x-5}}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}+\left(x-6\right)=0\)

\(\Leftrightarrow\frac{\frac{-2\left(x-6\right)}{\left(\sqrt[3]{7-x}\right)^2+\left(\sqrt[3]{x-5}\right)^2+\sqrt[3]{7-x}\sqrt[3]{x-5}}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}+\left(x-6\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(\frac{\frac{-2}{\left(\sqrt[3]{7-x}\right)^2+\left(\sqrt[3]{x-5}\right)^2+\sqrt[3]{7-x}\sqrt[3]{x-5}}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}+1\right)=0\)

\(\Rightarrow x-6=0\Rightarrow x=6\)

Bình luận (0)
JE
Xem chi tiết
NL
27 tháng 10 2019 lúc 0:12

a/ ĐKXĐ: ...

\(\Leftrightarrow3\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)-7\)

Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow a^2=x+\frac{1}{4x}+1\)

\(\Rightarrow x+\frac{1}{4x}=a^2-1\)

Pt trở thành:

\(3a=2\left(a^2-1\right)-7\)

\(\Leftrightarrow2a^2-3a-9=9\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}=3\)

\(\Leftrightarrow2x-6\sqrt{x}+1=0\)

\(\Rightarrow\sqrt{x}=\frac{3+\sqrt{7}}{2}\Rightarrow x=\frac{8+3\sqrt{7}}{2}\)

b/ ĐKXĐ:

\(\Leftrightarrow5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)+4\)

Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow x+\frac{1}{4x}=a^2-1\)

\(\Rightarrow5a=2\left(a^2-1\right)+4\Leftrightarrow2a^2-5a+2=0\)

\(\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x}+\frac{1}{2\sqrt{x}}=2\\\sqrt{x}+\frac{1}{2\sqrt{x}}=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x-4\sqrt{x}+1=0\\2x-\sqrt{x}+1=0\left(vn\right)\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
27 tháng 10 2019 lúc 0:22

c/ ĐKXĐ: ...

\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)

\(\Leftrightarrow\frac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\frac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-8x+5=0\)

d/ ĐKXĐ: ...

\(\Leftrightarrow x+1-\frac{15}{6}\sqrt{x}+\sqrt{x^2-4x+1}-\frac{1}{2}\sqrt{x}=0\)

\(\Leftrightarrow\frac{x^2-\frac{17}{4}x+1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{x^2-\frac{17}{4}x+1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}=0\)

\(\Leftrightarrow\left(x^2-\frac{17}{4}x+1\right)\left(\frac{1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}\right)=0\)

\(\Leftrightarrow x^2-\frac{17}{4}x+1=0\)

\(\Leftrightarrow4x^2-17x+4=0\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
27 tháng 10 2019 lúc 0:29

e/ ĐKXĐ: ...

\(\Leftrightarrow x^2-1+2x\sqrt{\frac{x^2-1}{x}}=3x\)

Nhận thấy \(x=0\) không phải nghiệm, pt tương đương:

\(\frac{x^2-1}{x}+2\sqrt{\frac{x^2-1}{x}}=3\)

Đặt \(\sqrt{\frac{x^2-1}{x}}=a\ge0\)

\(a^2+2a=3\Leftrightarrow a^2+2a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-3\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{\frac{x^2-1}{x}}=1\Leftrightarrow x^2-1=x\Leftrightarrow x^2-x-1=0\)

f/ ĐKXĐ: ...

\(\Leftrightarrow x^2-6+x\sqrt{\frac{x^2-6}{x}}-6x=0\)

Nhận thấy \(x=0\) ko phải nghiệm, pt tương đương:

\(\frac{x^2-6}{x}+\sqrt{\frac{x^2-6}{x}}-6=0\)

Đặt \(\sqrt{\frac{x^2-6}{x}}=a\ge0\)

\(a^2+a-6=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-3\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{\frac{x^2-6}{x}}=2\Leftrightarrow x^2-4x-6=0\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
TN
15 tháng 6 2017 lúc 18:37

Bài rút gọn 

\(\sqrt{\left(x-1\right)^2}-x=\left|x-1\right|-x\)

\(=\left(x-1\right)-x=x-1-x=-1\left(x>1\right)\)

Bài gpt:

\(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}=0\)

Đk:\(-1\le x\le3\)

\(pt\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{\left(x-1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-2}+\sqrt{x-3}\right)=0\)

Dễ thấy:\(\sqrt{x-2}+\sqrt{x-3}=0\) vô nghiệm

Nên \(\sqrt{x-1}=0\Rightarrow x-1=0\Rightarrow x=1\)

Bình luận (0)
ND
Xem chi tiết
NN
14 tháng 7 2019 lúc 14:59

\(a,\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)\(ĐKXĐ:x\ge-\frac{5}{7}\)

\(\Leftrightarrow9x-7=7x+5\)

\(\Leftrightarrow9x-7x=5+7\)

\(\Leftrightarrow2x=12\)

\(\Leftrightarrow x=6\)

Bình luận (0)
NN
14 tháng 7 2019 lúc 15:14

\(b,\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)

\(\Leftrightarrow\sqrt{4\left(x-5\right)}+3.\frac{\sqrt{x-5}}{\sqrt{9}}-\frac{1}{3}\sqrt{9\left(x-5\right)}=4\)

\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{x-5}\left(2+1-1\right)=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{x-5}=2\)

\(\Leftrightarrow x-5=4\)

\(\Leftrightarrow x=9\)

Bình luận (0)