Cho a,b,c >0 và a+b+c=4 .
Chứng minh rằng \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}>4\)
Cho a,b,c > 0 thỏa mãn \(a\sqrt{\dfrac{b}{c}}+b\sqrt{\dfrac{c}{a}}+c\sqrt{\dfrac{a}{b}}=3\). Chứng minh rằng:
\(N=\dfrac{a^4}{b^2}+\dfrac{b^4}{c^2}+\dfrac{c^4}{a^2}\ge3\)
Áp dụng \(x^2+y^2+z^2\ge xy+yz+zx\) và \(x^2+y^2+z^2\ge\dfrac{1}{3}\left(x+y+z\right)^2\)
\(N\ge\dfrac{a^2b}{c}+\dfrac{b^2c}{a}+\dfrac{c^2a}{b}\ge\dfrac{1}{3}\left(a\sqrt{\dfrac{b}{c}}+b\sqrt{\dfrac{c}{a}}+c\sqrt{\dfrac{a}{b}}\right)^2=3\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
1) Cho a, b, c>0 và a+b+c=3. Chứng minh rằng: \(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ac}\ge\frac{3}{2}\)
2) Cho a, b, c >0 thỏa mãn: ab+ac+bc+abc=4. Chứng minh rằng: \(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\le3\)
1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)
\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)
2.
Vỉ \(ab+bc+ca+abc=4\)thi luon ton tai \(a=\frac{2x}{y+z};b=\frac{2y}{z+x};c=\frac{2z}{x+y}\)
\(\Rightarrow VT=2\Sigma_{cyc}\sqrt{\frac{ab}{\left(b+c\right)\left(c+a\right)}}\le2\Sigma_{cyc}\frac{\frac{b}{b+c}+\frac{a}{c+a}}{2}=3\)
Cho o dong 2 la x,y,z nhe,ghi nham
Cho a,b,c>0 thỏa mãn a+b+c=4 . Chứng minh sqrt(a+b)+sqrt(b+c)+sqrt(c+a) >4
Cho a,b,c > 0 và \(a^2+b^2+c^2=1\)
Chứng minh rằng : \(4\le\sqrt{a^4+b^2+c^2+1}+\sqrt{a^2+b^4+c^2+1}+\sqrt{a^2+b^2+c^4+1}\le3\sqrt{2}\)
we have that: \(\sqrt{a^4+b^2+c^2+1}=\sqrt{a^4-a^2+2}\)
and \(\dfrac{-a^2+11}{8}\le\sqrt{a^4-a^2+2}\le\sqrt{2}\) \(\left(a\in\left(0;1\right)\right)\)
Cho a, b, c > 0 thỏa mãn a + b + c = 5 và \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\). chứng minh rằng: \(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
a)Cho a,b,c \(\ge\)0, a+b+c\(\le\)1.Chứng minh rằng:\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)
b)Cho a,b,c \(\ge\)0, a+b+c\(\le\)6.Chứng minh rằng: \(\sqrt{a+\sqrt{b+\sqrt{2c}}}+\sqrt{b+\sqrt{c+\sqrt{2a}}}+\sqrt{c+\sqrt{a+\sqrt{2b}}}\le6\)
a)Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)
\(\le2\cdot\left(1+1+1\right)\left(a+b+c\right)\le6\)
\(\Rightarrow VT^2\le6\Rightarrow VT\le\sqrt{6}=VP\)
Xảy ra khi \(a=b=c=\frac{1}{3}\)
b)Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{a+\sqrt{b+\sqrt{2c}}}+\sqrt{b+\sqrt{c+\sqrt{2a}}}+\sqrt{c+\sqrt{a+\sqrt{2b}}}\right)^2\)
\(\le\left(1+1+1\right)\left(a+b+c+Σ\sqrt{b+\sqrt{2c}}\right)\)
\(=3\left(6+\sqrt{b+\sqrt{2c}+\sqrt{c+\sqrt{2a}}}+\sqrt{a+\sqrt{2b}}\right)\)
Đặt \(A^2=\left(\sqrt{b+\sqrt{2c}+\sqrt{c+\sqrt{2a}}}+\sqrt{a+\sqrt{2b}}\right)^2\)
\(\le\left(1+1+1\right)\left(a+b+c+\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)\)
\(=3\left(6+\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)\)
Đặt tiếp: \(B^2=\left(\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)^2\)
\(\le2\cdot\left(1+1+1\right)\left(a+b+c\right)\le36\Rightarrow B\le6\)
\(\Rightarrow A^2\le3\left(6+\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)\le3\cdot12=36\Rightarrow A\le6\)
\(\Rightarrow VT^2\le3\left(6+\sqrt{b+\sqrt{2c}+\sqrt{c+\sqrt{2a}}}+\sqrt{a+\sqrt{2b}}\right)\)
\(\le3\left(6+6\right)=3\cdot12=36\Rightarrow VT\le6=VP\)
Xảy ra khi \(a=b=c=2\)
Cho \(a,b>0\); \(c< 0\). Chứng minh rằng:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Leftrightarrow\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Leftrightarrow ab+bc+ca=0\)
Cần cm:
\(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\\ \Leftrightarrow a+b=a+b+2c+2\sqrt{\left(a+c\right)\left(b+c\right)}\\ \Leftrightarrow2c+2\sqrt{ab+ac+bc+c^2}=0\\ \Leftrightarrow2c+2\sqrt{c^2}=0\\ \Leftrightarrow2c+2\left|c\right|=0\\ \Leftrightarrow2c-2c=0\left(c< 0\right)\\ \Leftrightarrow0=0\left(luôn.đúng\right)\)
Vậy đẳng thức đc cm
Cho a , b , c > 0 . Chứng minh rằng :
\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
\(\sqrt{\dfrac{a}{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)
Tương tự: \(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c}\) ; \(\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)
Cộng vế:
\(VT\ge\dfrac{2a+2b+2c}{a+b+c}=2\)
Dấu "=" ko xảy ra nên \(VT>2\)
Bài 3:
a) cho a≥1,b≥1. Chứng minh: a\(\sqrt{b-1}\)+b\(\sqrt{a-1}\) ≤ ab
b) ) Cho 4 số thực dương a, b, c, d. Chứng minh rằng: \(\sqrt{ac}+\sqrt{bd}\)≤\(\sqrt{\left(a+b\right)\left(c+d\right)}\)
a)Áp dụng AM-GM có:
\(a\sqrt{b-1}\le a.\dfrac{b-1+1}{2}=\dfrac{ab}{2}\)
\(b\sqrt{a-1}\le b.\dfrac{a-1+1}{2}=\dfrac{ab}{2}\)
\(\Rightarrow a\sqrt{b-1}+b\sqrt{a-1}\le\dfrac{ab}{2}+\dfrac{ab}{2}\)
\(\Leftrightarrow a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
Dấu "=" xảy ra khi a=b=2
b)Áp dụng bđt bunhiacopxki có:
\(\left(\sqrt{ac}+\sqrt{bd}\right)^2=\left(\sqrt{a}.\sqrt{c}+\sqrt{b}.\sqrt{d}\right)^2\)\(\le\left[\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2\right]\left[\left(\sqrt{c}\right)^2+\left(\sqrt{d}\right)^2\right]=\left(a+b\right)\left(c+d\right)\)
\(\Rightarrow\sqrt{ac}+\sqrt{bd}\le\sqrt{\left(a+b\right)\left(c+d\right)}\)
Dấu "=" xảy ra khi \(\dfrac{\sqrt{a}}{\sqrt{c}}=\dfrac{\sqrt{b}}{\sqrt{d}}\Leftrightarrow ad=bc\)
\(b,\) Áp dụng BĐT Bunhiacopski:
\(\left(a+b\right)\left(c+d\right)=\left[\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2\right]\left[\left(\sqrt{c}\right)^2+\left(\sqrt{d}\right)^2\right]\\ \ge\left(\sqrt{ac}+\sqrt{bd}\right)^2\)
Dấu \("="\Leftrightarrow ad=bc\)