Tìm \(x\), biết :
a) \(4x^2-4x=-1\)
b) \(8x^3+12x^2+6x+1=0\)
Tìm x, biết:
a) 4x^2 - 4x = -1
b) 8x^3 + 12x^2 + 6x +1 = 0
Giúp mình với =)))))
a, 4x^2 - 4x = -1
\(\Leftrightarrow\)4x^2 - 4x + 1 = 0
\(\Leftrightarrow\)(2x-1)2 =0
\(\Leftrightarrow\)2x - 1 = 0
\(\Leftrightarrow\)x = 1/2
b, \(\Leftrightarrow\)( 2x + 1)^3 = 0
\(\Leftrightarrow\)2x + 1 = 0
\(\Leftrightarrow\)x = -1/2
đúng thì
a) \(4x^2-4x=-1\)
\(\Leftrightarrow4x^2-4x+1=0\)
\(\Leftrightarrow\left(2x-1\right)^2=0\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
b) \(8x^3+12x^2+6x+1=0\)
\(\Leftrightarrow\left(2x+1\right)^3=0\)
\(\Leftrightarrow2x+1=0\)
\(\Leftrightarrow x=-\frac{1}{2}\)
a) (2x)2 - 4x = -1
2x - 4x = -1
-2x = -1
x = -1/-2
x = 1/2
tìm x biết 4x^2-4x=-1
8x^3+12x^2+6x+1=0
a,4x^2-4x+1=0
4x^2-2x-2x+1=0
2x (2x-1)-(2x-1)=0
(2x-1)(2x-1)=0
(2x-1)^2=0
=>2x-1=0 <=> x=1/2
tìm x biết: \(\text{8x^3-12x^2+6x+1-(4x^2-1)=0}\)
Lời giải:
PT $\Leftrightarrow 8x^3-16x^2+6x+2=0$
$\Leftrightarrow (8x^3-8x^2)-(8x^2-8x)-(2x-2)=0$
$\Leftrightarrow 8x^2(x-1)-8x(x-1)-2(x-1)=0$
$\Leftrightarrow (x-1)(8x^2-8x-2)=0$
$\Leftrightarrow 2(x-1)(4x^2-4x-1)=0$
$\Leftrightarrow x-1=0$ hoặc $4x^2-4x-1=0$
Nếu $x-1=0\Leftrightarrow x=1$
Nếu $4x^2-4x-1=0$
$\Leftrightarrow (2x-1)^2-2=0$
$\Leftrightarrow (2x-1-\sqrt{2})(2x-1+\sqrt{2})=0$
$\Leftrightarrow x=\frac{1\pm \sqrt{2}}{2}$
Tìm x, biết:
a. 4x2-4x=-1
b. 8x3+12x2+6x+1=0
có ai lm giúp mk vs kg?
Tìm x
x^2 - 4x - 12 = 0
4x^2 + 4x - 24 = 0
8x^3 - 12x^2 + 6x - 1 = 0
Tìm x biết
a)(x+3)^2(x-2)^2=2x b)7x(x-2)=(x-2) c)8x^3-12x^2+6x-1=0
d)4x^2-9-x(2x-3)=0 e)x^3+5x^2+9x=-45 f)x^3-6x^2-x+30=0
d) \(4x^2-9-x\left(2x-3\right)=0\)
\(\Leftrightarrow4x^2-9-2x^2+3x=0\)
\(\Leftrightarrow2x^2+3x-9=0\)
\(\Delta=3^2-4.2.\left(-9\right)=9+72=81\)
Vậy pt có 2 nghiệm phân biệt
\(x_1=\frac{-3+\sqrt{81}}{4}=\frac{-3}{2}\);\(x_1=\frac{-3-\sqrt{81}}{4}=-3\)
e) \(x^3+5x^2+9x=-45\)
\(\Leftrightarrow x^3+5x^2+9x+45=0\)
\(\Leftrightarrow x^2\left(x+5\right)+9\left(x+5\right)=0\)
\(\Leftrightarrow\left(x^2+9\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+9=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm3i\\x=-5\end{cases}}\)
f) \(x^3-6x^2-x+30=0\)
\(\Leftrightarrow\left(x^3-x^2-6x\right)-\left(5x^2-5x-30\right)=0\)
\(\Leftrightarrow x\left(x^2-x-6\right)-5\left(x^2-x-6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2-x-6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2-2x+3x-6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left[x\left(x-2\right)+3\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow x\in\left\{5;-3;2\right\}\)
Tìm x biết
a, x2 - 10x = -25
b, 4x2 - 4x = -1
c, 8x3 + 12x2 + 6x + 1 = 0
a, x2 - 10x = -25 b, 4x2 - 4x = -1 c, 8x3 +12x2 +6x+1=0
=>x2-10x+25=0 =>(2x)2-2.2x.1+1=0 =>(2x+1)3=0
=>(x-5)2=0 =>(2x-1)2=0 =>2x+1=0
=>x-5=0 =>2x-1=0 =>x = -1/2
=>x=5 =>x=1/2
x2 - 10x = -25
=> x2 - 10x + 25 = 0
=> (x - 5)2 = 0
=> x - 5 = 0
=> x = 5
tìm x biết a) 4x^2-4x=-1 b) 8x^3+12x^2+6x+1=0
Ta co 4x2 - 4x = -1
=> 4x2 - 4x + 1 = 0
<=> (2x - 1)2 = 0
=> 2x - 1 = 0
=> 2x = 1
=> x = \(\frac{1}{2}\)
a) \(4x^2-4x=-1\)
\(\Leftrightarrow4x^2-4x+1=0\)
\(\Leftrightarrow\left(2x-1\right)^2=0\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)
b) \(8x^3+12x^2+6x+1=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right).\left(8x^2+8x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=0\left(1\right)\\8x^2+8x+2=0\left(2\right)\end{cases}}\)
Giải (1) :
\(x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)
Giải (2) :
\(8x^2+8x+2=0\)
\(\Leftrightarrow\left(\sqrt{8}x+\sqrt{2}\right)^2=0\)
\(\Leftrightarrow\sqrt{8}x+\sqrt{2}=0\)
\(\Leftrightarrow\sqrt{8}x=-\sqrt{2}\)
\(\Leftrightarrow x=-\frac{\sqrt{2}}{\sqrt{8}}=-\frac{1}{2}\)
Từ (1) ; (2)
\(\Rightarrow x=-\frac{1}{2}\)
Bài 3: Tìm x
a) 4x2− 4x = −1 b) 8x3 + 12x2 + 6x + 1 = 0
a, \(4x^2-4x=-1\Leftrightarrow4x^2-4x+1=0\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow x=\frac{1}{2}\)
b, \(8x^3+12x^2+6x+1=0\Leftrightarrow\left(2x+1\right)^3=0\Leftrightarrow x=-\frac{1}{2}\)