Áp dụng định lí CÔ-si .CM G=\(\dfrac{\sqrt{x-4}}{2x}\)
tìm giá trị nhỏ nhất. áp dụng bất đẳng thức cô-si
\(\dfrac{x^2}{x+3}\) ;\(\dfrac{x^2}{x-2}\)
Cả 2 biểu thức này đều ko tồn tại GTNN
GTNN chỉ tồn tại khi có thêm điều kiện, với \(\dfrac{x^2}{x+3}\) thì điều kiện là \(x>-3\), còn \(\dfrac{x^2}{x-2}\) thì điều kiện là \(x>2\)
Giả sử có thêm điều kiện tương ứng (lần lượt là x>-3 và x>2)
Đặt \(A=\dfrac{x^2}{x+3}=\dfrac{x^2-9+9}{x+3}=\dfrac{\left(x-3\right)\left(x+3\right)+9}{x+3}=x-3+\dfrac{9}{x+3}\)
\(A=x+3+\dfrac{9}{x+3}-6\ge2\sqrt{\dfrac{9\left(x+3\right)}{x+3}}-6=0\)
\(A_{min}=0\) khi \(x+3=\dfrac{9}{x+3}\Rightarrow x=0\)
Đặt \(B=\dfrac{x^2}{x-2}=\dfrac{x^2-4+4}{x-2}=\dfrac{\left(x-2\right)\left(x+2\right)+4}{x-2}=x+2+\dfrac{4}{x-2}\)
\(B=x-2+\dfrac{4}{x-2}+4\ge2\sqrt{\dfrac{4\left(x-2\right)}{x-2}}+4=8\)
\(B_{min}=8\) khi \(x-2=\dfrac{4}{x-2}\Rightarrow x=4\)
áp dụng hằng đẳng thức
X - 1 =
x2 - 1 =
x - 4 =
x2 - 4x + 4 =
x - 4\(\sqrt{x}\) + 4 =
\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\) + \(\dfrac{2x}{x-1}\)
Lời giải:
1. Chỉ áp dụng được khi $x\geq 0$
$x-1=(\sqrt{x}-1)(\sqrt{x}+1)$
2. $x^2-1=(x-1)(x+1)$
3. $x-4=(\sqrt{x}-2)(\sqrt{x}+2)$ (chỉ áp dụng cho $x\geq 0$)
4. $x^2-4x+4=x^2-2.2x+2^2=(x-2)^2$
5. $x-4\sqrt{x}+4=(\sqrt{x})^2-2.2\sqrt{x}+2^2=(\sqrt{x}-2)^2$
6. $\frac{(\sqrt{x}+1)^2}{(\sqrt{x}-1)(\sqrt{x}+1)}+\frac{2x}{x-1}$
$=\frac{x+2\sqrt{x}+1}{x-1}+\frac{2x}{x-1}=\frac{3x+2\sqrt{x}+1}{x-1}$
Áp dụng định lí động năng, em hãy rút ra công thức (13.11).
\(v=\sqrt{\dfrac{2q_eEd}{m}}\) (13.11)
Độ biến thiên động năng bằng công của lực điện trường:
\({W_d} - {W_{d0}} = A \Rightarrow \frac{1}{2}m{v^2} - 0 = {q_e}Ed \Rightarrow v = \sqrt {\frac{{2{q_e}Ed}}{m}} \)
Áp dụng bđt cô si tìm max
a) A=-x^2+2x+7
b) B=(x-y)(5+2x-2y)+14
Cho mình hỏi bài này \(x+\sqrt{2-x^2}\) nếu tìm max mình áp dụng bất dẳng thức CÔ SI dc ko???
\(x+\sqrt{2-x}\ge2\sqrt{x\sqrt{2-x}}\)
Bìa này không thể dùng cauchy bạn ạ
Chưa có điều kiện của x, cụ thể là chưa cho x là một số không âm thì không thể dùng BĐT Cauchy được nhé.
x,y là 2 số thực dương . Tìm Min P=\(\dfrac{x+y}{\sqrt{x\left(2x+y\right)}+\sqrt{y\left(2y+x\right)}}\)
sao mik làm theo Cô si mà dấu = ko xảy ra nhỉ?
Áp dụng cosi có:
\(\sqrt{x\left(2x+y\right)}=\dfrac{1}{\sqrt{3}}\sqrt{3x\left(2x+y\right)}\le\dfrac{1}{\sqrt{3}}.\dfrac{5x+y}{2}\)
\(\sqrt{y\left(2y+x\right)}\le\dfrac{1}{\sqrt{3}}.\dfrac{5y+x}{2}\)
\(\Rightarrow P\ge\dfrac{x+y}{\dfrac{1}{2\sqrt{3}}\left(6x+6y\right)}=\dfrac{\sqrt{3}}{3}\)
Dấu = xảy ra khi x=y
Bài này áp dụng bunhia :v
Áp dụng bunhia với 2 cặp số `(sqrtx,sqrty),(sqrt{2x+y},sqrt{2y+x})`
`(x+y)(2x+y+2y+x)>=(sqrt{x(2x+y)}+sqrt{y(2y+x)})^{2}`
`<=>3(x+y)^{2}>=(sqrt{x(2x+y)}+sqrt{y(2y+x)})^{2}`
`=>sqrt{x(2x+y)}+sqrt{(2y+x)}<=sqrt3(x+y)`
`=>P>=1/sqrt3`
Dấu "="`<=>x=y`
Giải thích giúp mink vs mink ko hiểu ji hết ~~~ mink sẽ li-ke cho ~~~ câu ở dưới đó
Áp dụng định lí Cô-Si:
x + y \(\ge\) \(2\sqrt{xy}\)
Ta có \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge a\)
\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=2\sqrt{\frac{a^2}{4}}=2.\frac{a}{2}=a\)
định lí cô-si là định lí gì vậy lạ wá đâu có fải toán lớp 8
\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}+\frac{b+c}{4}=2\sqrt{\frac{a^2}{4}=}2.\frac{a}{2}=2.a:2=1a\left(2:2\right)=1a1=>=a}\)
Cho x,y thuộc R thỏa mãn \(x\sqrt{1-y^2}+y\sqrt{1-x^2}=1\)
Tính N = x2 + y2 (Áp dụng BĐT cô-si nhak)
áp dụng BĐT buniacopxki,ta có:\(\left(x\sqrt{1-y^2}+y\sqrt{1-x^2}\right)^2\le\left(x^2+y^2\right)\left(1-y^2+1-x^2\right)=\left(x^2+y^2\right)\left(2-\left(x^2+y^2\right)\right)\)
↔\(1\le\left(x^2+y^2\right)\left(2-\left(x^2+y^2\right)\right)\)
Đặt x2+y2=a(a>=0),ta có:\(1\le a\left(2-a\right)\)↔a2-2a+1\(\ge\)0 hay\(\left(a-1\right)^2\ge0\)
dấu = xảy ra khi a=1 do đó x2+y2=1
Áp dụng BĐT Cô-si, chứng minh:
\(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}>=\sqrt{a}+\)\(\sqrt{b}\)