CMR C = \(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{9999}{10000}< \dfrac{1}{100}\)
bài 4 : cmr :
c) C = \(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}....\dfrac{9999}{10000}< \dfrac{1}{100}\)
Ta có: \(C=\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}...\dfrac{9999}{10000}\)
\(C=\dfrac{1\cdot3\cdot5...9999}{2\cdot4\cdot6...10000}\)
Gọi \(D=\dfrac{2}{3}\cdot\dfrac{4}{5}\cdot\dfrac{6}{7}...\dfrac{10000}{10001}\)
Mà \(\dfrac{1}{2}< \dfrac{2}{3};\dfrac{3}{4}< \dfrac{4}{5};\dfrac{5}{6}< \dfrac{6}{7};...;\dfrac{9999}{10000}< \dfrac{10000}{10001}\)
\(\Rightarrow\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}...\dfrac{9999}{10000}< \dfrac{2}{3}\cdot\dfrac{4}{5}\cdot\dfrac{6}{7}...\dfrac{10000}{10001}\)
\(\Rightarrow C< D\)
Ta lại có: \(C\cdot D=\left(\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}...\dfrac{9999}{10000}\right)\left(\dfrac{2}{3}\cdot\dfrac{4}{5}\cdot\dfrac{6}{7}...\dfrac{10000}{10001}\right)\)
\(\Rightarrow C\cdot D=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{4}{5}\cdot\dfrac{5}{6}\cdot\dfrac{6}{7}...\dfrac{9999}{10000}\cdot\dfrac{10000}{10001}\)
\(\Rightarrow C\cdot D=\dfrac{1\cdot2\cdot3\cdot4\cdot5\cdot6...9999\cdot10000}{2\cdot3\cdot4\cdot5\cdot6\cdot7...10000\cdot10001}\)
\(\Rightarrow C\cdot D=\dfrac{1}{10001}\)
Mà \(C< D\)
\(\Rightarrow C\cdot C< C\cdot D\)
\(\Rightarrow C\cdot C< \dfrac{1}{10001}\)
\(\Rightarrow C< \dfrac{1}{10001}\)
Mà \(\dfrac{1}{10001}< \dfrac{1}{100}\)
\(\Rightarrow C< \dfrac{1}{100}\)
Vậy \(C< \dfrac{1}{100}\)
C = \(\dfrac{1}{2}\).\(\dfrac{3}{4}\).\(\dfrac{5}{6}\)....\(\dfrac{9999}{10000}\)
C < \(\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}....\dfrac{10000}{10001}\)
C2 < \(\dfrac{1.\left(3.5.7...9999\right)}{\left(2.4.6...10000\right)}.\dfrac{\left(2.4.6...10000\right)}{\left(3.5.7...9999\right).10001}\)
C2 < \(\dfrac{1}{10001}\)
C2 < \(\left(\dfrac{1}{100}\right)^2\)
C < \(\dfrac{1}{100}\)
Vậy \(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}....\dfrac{9999}{10000}< \dfrac{1}{100}\)
Chúc bạn học tốt !
ta có : 1/2 < 2/3
2/3 <3/4
......... 9999/10000 < 10000/10001 suy ra : A2 < 1/22/33/4*****9999/1000010000/10001 suy ra : A2 < 1/10001 < 1/10000= (1/100)2 suy ra A2 < (1/100)2 . Từ đó: A < 1/100 = 0,01
So sánh C và \(\dfrac{1}{100}\) biết: C= \(\dfrac{1}{2}\). \(\dfrac{3}{4}\). \(\dfrac{5}{6}\) . .... . \(\dfrac{9999}{10000}\)
Chứng tỏ rằng \(C=\dfrac{1}{2}\times\dfrac{3}{4}\times\dfrac{5}{6}\times...\times\dfrac{9999}{10000}< \dfrac{1}{100}\)
Cho : A = \(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}.\dfrac{9999}{10000}\)
Hãy so sánh A với \(\dfrac{1}{100}\)
bài 5
cho A=\(\dfrac{1}{2}\cdot\dfrac{3}{4}\dfrac{5}{6}\cdot...\cdot\dfrac{9999}{10000}\)
So sánh a với \(\dfrac{1}{100}\)
Thao quy ước của 1 phân số lớn hơn 0 thì:
\(\dfrac{a}{b}>0=>\dfrac{a}{b}< \dfrac{a+n}{b+n}\left(n\ne0\right)\)
Áp dụng vào từng phân số trên ta có: ( các phân số trên lớn hơn 0 nên):
để ý rằng các phân số trên đều lớn hơn 1/100
=>tích cũng lớn hơn 1/100
=>A>1/100
CHÚC BẠN HỌC TỐT.............
Cho \(A=\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{9999}{10000}\). So sánh A với 0,01
Chứng minh rằng:
a, A= 1+\(\dfrac{1}{2}\)+ \(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)+......+\(\dfrac{1}{63}\)<6
b, B= \(\dfrac{1}{2}\).\(\dfrac{3}{4}\).\(\dfrac{5}{6}\)......\(\dfrac{9999}{10000}\)< \(\dfrac{1}{100}\)
Kiyoko Vũ
a, xét từng đoạn 1 , 1/2 ,1/2^3 ,1/2^4 ,1/2^5 ,1/2^6
ta có
1 = 1
1/2 + 1/3 < 1/2 + 1/2 = 1
1/4 + 1/5 + .. + 1/7 < 1/4 +..+ 1/4 = 4/4 = 1
1/8 + 1/9 + .. + 1/15 < 1/8 + .. + 1/8 = 8/8 = 1
tương tự
1/16 +1/17 + .. + 1/31 < 1
1/32 + 1/33 + .. + 1/63 < 1
=> cộng lại => A < 6
b, Câu hỏi của trịnh quỳnh trang - Toán lớp 6 - Học toán với OnlineMath
Cho :
A = \(\dfrac{1}{2}\) . \(\dfrac{3}{4}\) . \(\dfrac{5}{6}\) . \(\dfrac{9999}{10000}\)
Hãy so sánh A với \(\dfrac{1}{100}\)
Cho S = \(\dfrac{1}{2}\). \(\dfrac{3}{4}\). \(\dfrac{5}{6}\). ... . \(\dfrac{9999}{10000}\)so sánh S với 0,01
Giải:
Vì:
\(\dfrac{1}{2}< \dfrac{2}{3}.\)
\(\dfrac{2}{3}< \dfrac{3}{4}.\)
.............
\(\dfrac{9999}{10000}< \dfrac{10000}{10001}.\)
\(\Rightarrow S^2< \dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.....\dfrac{9999}{10000}.\dfrac{10000}{10001}.\)
\(\Rightarrow S^2< \dfrac{1}{10001}< \dfrac{1}{10000}=\left(\dfrac{1}{100}\right)^2.\)
Mà \(\left(\dfrac{1}{100}\right)^2=0,01^2.\)
\(\Rightarrow S^2< 0,01^2\left(=\left(\dfrac{1}{100}\right)^2\right).\)
\(\Rightarrow S< 0,01.\)
Vậy \(S< 0,01.\)
~ Học tốt!!! ~