Cho phân số: D = 1/3 + 2/3^2 + 3/3^3 + ... + 100/3^100 + 101/3^101. CMR: D < 3/4
CMR:1/3+2/3^2+3/3^3+4/3^4+...+100/3^100+101/3^101<3/4
Cho bieu thuc
D=1/3 + 2/3^2 + 3/3^3 + ........+ 100/3^100 + 101/3^101
Cho biểu thức D =\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^2}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\) chứng minh rằng D < \(\frac{3}{4}\)
D=\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^2}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\)
D=\(\frac{1}{3}+\frac{101}{3^{101}}\)
D=\(\frac{1}{3}\)
\(\frac{1}{3}và\frac{3}{4}\)
\(\frac{1}{3}=\frac{4}{12}\)
\(\frac{3}{4}=\frac{9}{12}\)
Vì\(\frac{4}{12}< \frac{9}{12}Vậy\frac{1}{3}< \frac{3}{4}\)
D = 1/3 + 2/32 + 3/33 + ..... + 100/3100 + 101/3101 Chứng minh rằng D < 3/4
Ta có: \(D=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\)
\(\Rightarrow3D=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)
\(\Rightarrow3D-D=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{101}{3^{101}}\right)\)
\(\Rightarrow2D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow6D=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow6D-2D=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{100}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)
\(\Rightarrow4D=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)
\(\Rightarrow4D< 3-\frac{203}{3^{100}}< 3\Rightarrow D< \frac{3}{4}\left(ĐPCM\right)\)
Cho biểu thức: D= \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\)
Chứng minh rằng D < \(\frac{3}{4}\)
Tính:
a; C=101+100+99+98+............+3+2+1/101-100+99-98+.................+3-2+1
b; D=3737.43-443.37/2+4+6+....................+100
101 + 100 + ... + 2 + 1 = 101x102/2 = 101x51 = 5151
101 - 100 + 99 - .. + 1 = ( 101 -100 ) + ( 99 - 98 ) + ... + ( 3 - 2 ) + 1 = 1 + 1 + 1 + ... + 1 ( 51 số ) = 51
suy ra C = 5151/51 = 101
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
3737x43 - 4343x36 = 37x101x43 - 43x101x36 = 43x101 = 4343
2 + 4 + 6 +... + 100 = 2x( 1 + 2 + ... + 50 ) = 2x50x51/2 = 50x51 = 2550
vậy D = 4343/2550
Các bạn ơi, cho tớ hỏi:
1+2-3+4-5+...+100-101+102
=(1+2)+(4-3)+...+(101-100)
=3+1+.............+1
50 số 1
- Số 50 ở đâu thế?
50 số 1 ở đây có nghĩa là số 1 đc lặp lại 50 lần.
50 số 1 là số 1 đc lặp lại 50 lần nha bạn
S=1×2+2×3+3×4+4×5+...........+99×100
3S=1×2×3+2×3×(4-1)+3×4×(5-2)+4×5×(6-3)+............+99×100×(101-98)
3S=1×2×3+2×3×4-1×2×3+3×4×5-2×3×4+4×5×6-3×4×5+.............+99×100×101-98×99×100
3S=99×100×101
Tại sao 3S=99×100×101
Các bạn giải thích hộ mình với!
MÌNH CẢM ƠN MỌI NGƯỜI!
cho D=1/3+2/32+...+101/1012
CMR D<3/4
\(D=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\)
\(\Rightarrow3D=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{101}{3^{100}}\)
\(\Rightarrow2D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}=A-\frac{101}{3^{101}}\)
\(A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\)
\(3A=3+1+\frac{1}{3}+...+\frac{1}{3^{99}}\)
\(\Rightarrow2A=3-\frac{1}{3^{100}}\Rightarrow A=\frac{3}{2}-\frac{1}{2.3^{100}}< \frac{3}{2}\)
\(\Rightarrow2D=A-\frac{101}{3^{101}}< A< \frac{3}{2}\Rightarrow D< \frac{3}{4}\)