Chứng minh : 1 + 3 + 3^2 + 3^3 + .......+3^99 chia hết cho 4
Cho S = 1+3+3^2+3^3+3^4+...+3^99
a) Chứng minh rằng S chia hết cho 4
b) Chứng minh rằng S chia hết cho 40
Cho B= 1 + 3 + 3^2 + 3^3 + ......+ 3^99
a/Chứng minh B chia hết cho 4
b/Chứng minh B chia hết cho 40
a)B=1+3+32+33+....+399
=(1+3)+(32+33)+...+(398+399)
=4+32.4+....+398.4
=4.(1+32+...+398) chia hết cho 4
Vậy B chia hết cho 4
b)B=1+32+33+34+...+399
=(1+3+32+33)+....+(396+397+398+399)
=40+.........+396.40
=40.(1+....+396) chia hết cho 40
Vậy B chia hết cho 40
a)B=(1+3)+(32+33)+...+(398+399)
=(1+3)+32(1+3)+....+398(1+3)
=4+32.4+...+398.4
=4(1+32+...+398) chia hết cho4
câu b bạn vận dụng theo câu a là đc bạn nhóm 4 lại nhé mình hơi lười làm
a) B=3^0+3^1+3^2+ .............+3^99
=1(1+3)+3^2(1+3)+.................3^98(1+3)
=4+3^2.\(\times4+.............+3^{98}\times4\)
\(=4\left(1+3^2+............3^{98}\right)\)
\(\Rightarrow\)Bchia hết cho 4
cho A=1+3+3^2+3^3+3^4+...+3^99+3^100.chứng minh A chia hết cho 4
\(A=1+3+3^2+3^3+3^4+...+3^{99}+3^{100}\)
\(A=1+3+\left(3^2+3^3+3^4+...+3^{99}+3^{100}\right)\)
\(A=1+3\)
\(A=4\)
→ \(4\) ⋮ 4
⇒ \(A\)⋮\(4\)
C = 1 +3 +3 ^ 2 +...........+ 3 ^99 . Chứng minh rằng
a,C chia hết cho 4 b, C chia hết cho 40
C/M C\(⋮\)4
\(C=1+3+3^2+...+3^{99}⋮4\)
\(C=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{98}+3^{99}\right)⋮4\)
\(C=\left(1+3\right)+3^2.\left(1+3\right)+...+3^{98}.\left(1+3\right)⋮4\)
\(C=4+3^2.4+...+3^{98}.4⋮4\)
\(C=4.\left(1+3^2+...+3^{98}\right)⋮4\)
C/M C\(⋮\)40
\(C=1+3+3^2+...+3^{99}⋮40\)
\(C=\left(1+3+3^2+3^3\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)⋮40\)
\(C=\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)⋮40\)
\(C=40.1+...+3^{96}.40⋮40\)
\(C=40.\left(1+...+3^{96}\right)⋮40\)
ai lạnh ko tui lạnh quá mà vẫn ko có ng iu
chứng minh:3^1+3^2+3^3+...+3^99+3^100 chia hết cho 4
Cho A=1+3+31+32+32+…+399
a. Chứng minh rằng A chia hết cho 4
b. Chứng minh rằng A chia hết cho 41 thì A chia hết cho 164
mình cũng chỉ làm được câu a thôi. hì hì
1.a,chứng minh 12^4.54^2=36^5
b,10^6-5^7 chia hết cho 59
c,cho S=1+3^1+3^2+3^3…+3^99 chứng minh S chia hết cho 4, S chia hết cho 40
2. Tính: 10^4.27^3/6^4.15^4
Chứng minh rằng :1-3+3^2-3^3+...+3^98-3^99 chia hết cho 4
1-3+3^2-3^3+...+3^98-3^99=(1-3+3^2-3^3)+(3^4-3^5+3^6-3^7)+...+(3^96-3^97+3^98-3^99)
=-20+3^4.(1-3+3^2-3^3)+...+3^96.(1-3+3^2-3^3)
=-20+3^4.(-20)+...+3^96.(-20)
=-20.(1+3^4+...+3^96)
=-5.4.(1+3^4+...+3^96)
=>1-3+3^2-3^3+...+3^98-3^99 chia hết cho 4
Chứng minh b chia hết cho 40 B= 1+3^2+3^3+3^4+........+3^98+3^99
\(\text{Ta có:}\)
\(B=1+3+3^2+3^3+3^4+3^5+3^6+3^7+.......+3^{96}+3^{97}+3^{98}+3^{99}\)
\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+.....+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)
\(=40+\left[3^4\left(1+3+3^2+3^3\right)\right]+.....+\left[3^{96}\left(1+3+3^2+3^3\right)\right]\)
\(=40+3^4\cdot40+....+3^{96}\cdot40\)
\(=40\left(1+3^4+....+3^{96}\right)\)
\(\Rightarrow B⋮40\)