1+3+32+33+.....+399
= (1+3)+(32+33)+....+(398+399)
= 1(1+3) + 32(1+3) +.....+ 398(1+3)
= 1.4 + 32.4 +......+ 398.4
= 4.(1+32+....+398) chia hết cho 4
=> 1+3+32+33+.....+399 chia hết cho 4 (đpcm)
Ta có :
\(1+3+3^2+3^3+...+3^{99}\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{98}+3^{99}\right)\)
\(=\left(1+3\right)+3^2.\left(1+3\right)+...+3^{98}.\left(1+3\right)\)
\(=4+3^2.4+...+3^{98}.4\)
\(=4.\left(1+3^2+...+3^{98}\right)\) chia hết cho 4
Đặt 1+3+32+33+34+...+399 = A
A = (1+3)+(32+33)+...+(398+399)
A = 4+32.(1+3)+...+398.(1+3)
A = 4+32.4+...+398.4
A = 4.(1+32+...+398) chia hết cho 4
=> 1+3+32+...+399 chia hết cho 4