\(\frac{2011}{1.2}+\frac{2011}{3.4}+\frac{2011}{5.6}+...+\frac{2011}{1999.2000}\)
\(\frac{2011}{1.2}+\frac{2011}{3.4}+\frac{2011}{5.6}+...+\frac{2011}{1999.2000}\)
$A=\frac{2011}{1.2}+\frac{2011}{3.4}+\frac{2011}{5.6}+...+\frac{2011}{1999.2000}$
$B=\frac{2012}{1001}+\frac{2012}{1002}+\frac{2012}{1003}+...\frac{2012}{2000}$
\(a=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
b=\(\frac{2011}{51}+\frac{2011}{52}+\frac{2011}{53}+...+\frac{2011}{100}\)
cmr:\(\frac{a}{b}\)là 1 số nguyên
a=\(1-\frac{1}{2}+\frac{1}{3}-...-\frac{1}{100}=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)\(=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)=\frac{1}{51}+...+\frac{1}{100}\)
=>b/a=2011
hình như đề : CMR : \(\frac{b}{a}\)là 1 số nguyên
Ta có :
\(a=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(a=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(a=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(a=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(a=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
\(a=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(b=\frac{2011}{51}+\frac{2011}{52}+\frac{2011}{53}+...+\frac{2011}{100}\)
\(b=2011.\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\right)\)
\(\Rightarrow\frac{b}{a}=\frac{2011.\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\right)}{\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}}=2011\)là 1 số nguyên ( đpcm )
Sửa đề: Chứng minh \(\frac{b}{a}\)là một số nguyên
Ta có: \(a=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
Áp dụng quy tắc dấu ngoặc vào tổng đại số trên , và theo quy luật của tổng đại số.ta có:
\(a=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
Tiếp tục phân tích , ta được:
\(a=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
Ta có: \(\frac{b}{a}=\frac{\frac{2011}{51}+\frac{2011}{52}+\frac{2011}{53}+...+\frac{2011}{100}}{\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}}\)
\(=\frac{2011\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\right)}{\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}}=\frac{2011}{1}=2011\)là một số nguyên (đpcm)
1. Tinh a \(\left(6^9.2^{10}+12^{10}\right)+\left(2^{19}.27^3+15.4^9.9^4\right)\)
2. So sanh A va B.
a) \(A=\frac{-2012}{4025};B=\frac{-1999}{3997}\)
b) \(A=3^{21};B=2^{31}\)
c) \(A=\frac{2011}{1.2}+\frac{2011}{3.4}+\frac{2011}{5.6}+....+\frac{2011}{1999.2000};\)\(B=\frac{2012}{1001}+\frac{2012}{1002}+\frac{2012}{1003}+....+\frac{2012}{2000}\)
1/ (69.210+1210)+(219.273+15.49.94) = 29.39.210+310.220+219.39+5.3.218.38 = 219.39+310.220+219.39+5.218.39
= 218.39(2+3.22+5)=19.218.39
sao bạn lại nhắn vớ va vớ vậy PHẠM ĐỨC PHÚC
1/ (69
.210+1210
)+(219
.273+15.49
.94
) = 29
.39
.210+310
.220+219
.39+5.3.218
.38
= 219
.39+310
.220+219
.39+5.218
.39
= 2
18
.39
(2+3.22+5)=19.218
.39
So sánh A và B trong những trường hợp sau:
a) A = \(\frac{-2012}{4025}\); B = \(\frac{-1999}{3997}\)
b) A = \(\frac{2011}{1.2}+\frac{2011}{3.4}+...+\frac{2011}{1999.2000}\); B = \(\frac{2012}{1001}+\frac{2012}{1002}+...+\frac{2012}{2000}\)
Ta có:
A=-2012/4025=>-2012/4025x2=-4024/4025
B=-1999/3997=>-1999/3997x2=-3998/3997
Ta có: 4024/4025<1<3998/3997
=>4024/4025<3998/3997
=>-4024/4025>-3998/3997
=>-2012/4025>-1999/3997
Có ai biết làm câu b) ko vậy, mình ko biết làm, giúp mình với!!
Cho \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)và \(B=\frac{2011}{51}+\frac{2011}{52}+\frac{2011}{53}+...+\frac{2011}{100}\)
Chứng minh rằng \(\frac{B}{A}\)là một số nguyên
bài này lớp 6 mik làm rùi
Ta có:
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
\(A=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
Ta có \(\frac{B}{A}=2011\)
($\frac{1}{1.2}$ + $\frac{1}{2.3}$ + $\frac{1}{3.4}$ + ... + $\frac{1}{2011. 2012}$ ) x = 2011
\(\Leftrightarrow x\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\right)=2011\)
\(\Leftrightarrow x\cdot\dfrac{2011}{2012}=2011\)
hay x=2012
\(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2011.2012}\right)x=2011\)
\(\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\right)x=2011\)
\(\left(\dfrac{1}{1}-\dfrac{1}{2012}\right)x=2011\)
\(\dfrac{2011}{2012}x=2011\)
\(x=2012\)
`(1/[1.2]+1/[2.3]+1/[3.4]+....+1/[2011.2012])x=2011`
`(1-1/2+1/2-1/3+1/3-1/4+.....+1/2011-1/2012)x=2011`
`(1-1/2012)x=2011`
`2011/2012x=2011`
`x=2011:2011/2012`
`x=2012`
So sánh
A=2011/1.2+ 2011/3.4+2011/5.6+...+2011/1999.2000
B=2012/1001+2012/1002+2012/1003+...+2012/2000
Giups mk với mk cần gấp lắm
B=\(\dfrac{2011}{1.2}+\dfrac{2011}{3.4}+\dfrac{2011}{5.6}+...+\dfrac{2011}{1999.2000}\)
hãy tính B giúp mk nhé
Có: \(B=\dfrac{2011}{1.2}+\dfrac{2011}{2.3}+\dfrac{2011}{3.4}+...+\dfrac{2011}{1999.2000}\)
B= \(2011\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{1999.2000}\right)\)
B = \(2011\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{1999}-\dfrac{1}{2000}\right)\)
B= \(2011.\left(1-\dfrac{1}{2000}\right)\)
B = \(2011.\dfrac{1999}{2000}=\dfrac{4019989}{2000}\)