Những câu hỏi liên quan
QL
Xem chi tiết
CO
15 tháng 11 2018 lúc 22:09

\(\text{Ta có :}\)

\(x^{8n}+x^{4n}+1=x^{8n}+2x^{4n}+1-x^{4n}\)

\(=\left(x^{4n}+1\right)^2-\left(x^{2n}\right)^2\)

\(=\left(x^{4n}-x^{2n}+1\right)\left(x^{4n}+x^{2n}+1\right)\)

\(\text{Ta lại có :}\)

\(x^{4n}+x^{2n}+1=x^{4n}+2x^{2n}+1-x^{2n}\)

\(=\left(x^{2n}+1\right)^2-\left(x^n\right)^2=\left(x^{2n}-x^n+1\right)\left(x^{2n}+x^n+1\right)\)

\(\Rightarrow x^{8n}+x^{4n}+1=\left(x^{4n}-x^{2n}+1\right)\left(x^{2n}-x^n+1\right)\left(x^{2n}+x^n+1\right)\)

\(\Rightarrow x^{8n}+x^{4n}+1⋮x^{2n}+x^n+1\)

Bình luận (0)
PV
Xem chi tiết
NN
Xem chi tiết
NT
Xem chi tiết
MS
Xem chi tiết
MS
9 tháng 3 2017 lúc 20:59

có anh chị gv nào giúp em với

Bình luận (0)
NG
9 tháng 3 2017 lúc 21:19

Bài 272 , 273 Sách nâng cao và phát triển toán 8 tập 1 trang 71, bài tương tự đấy

Bình luận (0)
NG
9 tháng 3 2017 lúc 21:20

sorry k phải bài 273

Bình luận (0)
CT
Xem chi tiết
NN
Xem chi tiết
LV
20 tháng 3 2020 lúc 21:53

Bài 1:

a) \(3\left(x+5\right)=x-7\)

\(\Leftrightarrow3x+15=x-7\)

\(\Leftrightarrow3x+15-x=-7\)

\(\Leftrightarrow2x+15=-7\)

\(\Leftrightarrow2x=-22\)

\(\Leftrightarrow x=-11\)

Vậy \(x=-11\)

Bình luận (0)
 Khách vãng lai đã xóa
LV
20 tháng 3 2020 lúc 21:57

Bài 2:

\(\left|x+2\right|-14=-9\)

\(\Leftrightarrow\left|x+2\right|=5\)

Chia 2 trường hợp:

\(\Leftrightarrow\orbr{\begin{cases}x+2=5\\x+2=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-7\end{cases}}}\)

Vậy \(x\in\left\{3;-7\right\}\)

Hơi vội, sai thì thôi nhé!

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
LD
22 tháng 6 2017 lúc 8:32

Vì n là số tự nhiên 

Nên khi n là số chẵn thì n có dạng 2k

Ta có : (5.2k + 7) x (2.2k + 6) = (10k + 7) x 2.(2k + 3) chia hết cho 2 

Nếu n là số lẻ thfi n có dạng 2k + 1

Ta có : (5.2k + 1 + 7) x (2.2k + 1 + 6) = (10k + 8) x ( 4k + 7) = 2(5k + 4) x (4k + 7) chia hết cho 2

Vậy với mọi số tự nhiện n thì (5n + 7) x (2n + 6) đếu chia hết cho 2 (đpcm)

Bình luận (0)
H24
22 tháng 6 2017 lúc 8:30

Do \(4n+6⋮2\)

\(\Leftrightarrow\left(5n+7\right)\left(4n+6\right)⋮2\)

Bình luận (0)
TP
22 tháng 6 2017 lúc 8:31

Ta có : 4n \(⋮\)2, 6\(⋮\)2 → ( 4n + 6 ) \(⋮\)2

→ ( 5n + 7 ) x ( 4n + 6 ) \(⋮\)2 ( vì ta có qui ước : a \(⋮\)m → a . b \(⋮\)m )

Bình luận (0)
LC
Xem chi tiết
PM
14 tháng 2 2018 lúc 14:33

- Vì n là số tự nhiên nên n = 5k hoặc n = 5k + 1 hoặc n = 5k + 2 hoặc n = 5k + 3 hoặc n = 5k + 4 .( k thuộc N )

+) Với n = 5k thì n chia hết cho 5.

=> n x ( n + 1 ) x ( 2n + 1 ) x ( 3n + 1 ) x ( 4n + 1 ) chia hết cho 5.

+) Với n = 5k + 1 thì 4n + 1 = 4 x ( 5k + 1 ) + 1 = 20k + 4 + 1 = 20k + 5 chia hết cho 5.

=> n x ( n + 1 ) x ( 2n + 1 ) x ( 3n + 1 ) x ( 4n + 1 ) chia hết cho 5.

+) Với n = 5k + 2 thì 2n + 1 = 2 x ( 5k + 2 ) + 1 = 10k + 4 + 1 = 10k + 5 chia hết cho 5.

=> n x ( n + 1 ) x ( 2n + 1 ) x ( 3n + 1 ) x ( 4n + 1 ) chia hết cho 5.

+) Với n = 5k + 3 thì 3n + 1 = 3 x ( 5k + 3 ) + 1 = 15k + 9 + 1 = 15k + 10 chia hết cho 5.

=> n x ( n + 1 ) x ( 2n + 1 ) x ( 3n + 1 ) x ( 4n + 1 ) chia hết cho 5.

+) Với n = 5k + 4 thì n + 1 = 5k + 4 + 1 = 5k + 5 chia hết cho 5.

=> n x ( n + 1 ) x ( 2n + 1 ) x ( 3n + 1 ) x ( 4n + 1 ) chia hết cho 5.

Vậy với mọi số tự nhiên n thì n x ( n + 1 ) x ( 2n + 1 ) x ( 3n + 1 ) x ( 4n + 1 ) chia hết cho 5.

Bình luận (0)
ND
12 tháng 1 2021 lúc 21:38

Với mọi số tự nhiên n ta có các trường hợp sau: TH1: n chia hết cho 5 thì tích chia hết cho 5. TH 2: n chia cho 5 dư 1 thì n = 5k +1 Þ 4n +1= 20k + 5 chia hết cho 5 Þ tích chia hết cho 5. TH3: n chia cho 5 dư 2 thì n = 5k +2 Þ 2n +1= 10k + 5 chia hết cho 5 Þ tích chia hết cho 5. TH4: n chia cho 5 dư 3 thì n = 5k +3 Þ 3n +1= 15k + 10 chia hết cho 5 Þ tích chia hết cho 5. TH 5: n chia cho 5 dư 4 thì n = 5k +4 Þ n +1= 5k + 5 chia hết cho 5 Þ tích chia hết cho 5. Vậy : n( n +1)( 2n +1)( 3n + 1)( 4n +1) chia hết cho 5 với mọi số tự nhiên n.

Bình luận (0)
 Khách vãng lai đã xóa
PV
29 tháng 4 2021 lúc 7:49

Đặt A = n.(n+1).(2n+1).(3n+1).(4n+1)

+, Nếu n chia 5 dư 1 => 4n+1 chia hết cho 5 => A chia hết cho 5

+, Nếu n chia 5 dư 2 => 3n+1 chia hết cho 5 => A chia hết cho 5

+, Nếu n chia 5 dư 3 => 2n+1 chia hết cho 5 => A chia hết cho 5

+, Nếu n chia 5 dư 4 => n+1 chia hết cho 5 => A chia hết cho 5

+, Nếu n chia hết cho 5 => A chia hết cho 5

Vậy A luôn chia hết cho 5

Bình luận (0)
 Khách vãng lai đã xóa