Những câu hỏi liên quan
H24
Xem chi tiết
H24
Xem chi tiết
NN
5 tháng 10 2016 lúc 8:34

a) - Do p là số nguyên tố nên p là số tự nhiên.

*) Xét p=3k+1 => \(p^2+8=\left(3k+1\right)^2+8=9k^2+6k+9⋮3\) (hợp số)

*) Xét p=3k+2 => \(p^2+8=\left(3k+2\right)^2+8=9k^2+12k+12⋮3\) (hợp số)

*) Xét p=3k => k=1 do p là số nguyên tố => \(p^2+8=9+8=17\) (t/m)

Ta có: \(p^2+2=11\). Mà 11 là số nguyên tố => điều phải chứng minh.

b) (Làm tương tự bài trên)

 - Do p là số nguyên tố => p là số tự nhiên.

*) Xét p=3k+1 => \(8p^2+1=8\left(3k+1\right)^2+1=8\left(9k^2+6k+1\right)+1=3k.8\left(3k+2\right)+\left(8+1\right)⋮3\)(hợp số)

*) Xét p=3k+2 => \(8p^2+1=8\left(3k+2\right)^2+1=8\left(9k^2+12k+4\right)+1=3k.8\left(3k+4\right)+\left(32+1\right)⋮3\) (hợp số)

*) Xét p=3k => k=1 Do p là số nguyên tố => \(8p^2+1=8.9+1=73\)(t/m)

Ta có : \(2p+1=7\). Mà 7 là số nguyên tố => Điều phải chứng minh.

Bình luận (1)
H24
30 tháng 9 2016 lúc 14:00

làm ơn giải hộ mình nhanh lên

Bình luận (0)
NA
Xem chi tiết
MC
Xem chi tiết
HH
10 tháng 8 2015 lúc 11:27

p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.

+Nếu p = 3k+1 thì $$ chia hết cho 3 => 2p+1 không phải số nguyên tố => loại

+Vậy p có dạng 3k+2

Khi đó $$ chia hết cho 3.

Vậy 4p+1 là hợp số,

Bình luận (0)
VB
3 tháng 1 2016 lúc 15:17

p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.

+Nếu p = 3k+1 thì chia hết cho 3 => 2p+1 không phải số nguyên tố => loại

+Vậy p có dạng 3k+2

Khi đó chia hết cho 3.

Vậy 4p+1 là hợp số, 

Bình luận (0)
MC
Xem chi tiết
ML
8 tháng 8 2015 lúc 21:44

p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.

+Nếu p = 3k+1 thì \(2p+1=2\left(3k+1\right)+1=6k+3\) chia hết cho 3 => 2p+1 không phải số nguyên tố => loại

+Vậy p có dạng 3k+2

Khi đó \(4p+1=4\left(3k+2\right)+1=12k+9\) chia hết cho 3.

Vậy 4p+1 là hợp số,

Bình luận (0)
NM
10 tháng 8 2015 lúc 10:37

p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.

+Nếu p = 3k+1 thì $2p+1=2\left(3k+1\right)+1=6k+3$2p+1=2(3k+1)+1=6k+3 chia hết cho 3 => 2p+1 không phải số nguyên tố => loại

+Vậy p có dạng 3k+2

Khi đó $4p+1=4\left(3k+2\right)+1=12k+9$4p+1=4(3k+2)+1=12k+9 chia hết cho 3.

Vậy 4p+1 là hợp số,

Bình luận (0)
TK
26 tháng 10 2016 lúc 19:59

đươi

haha

Bình luận (0)
BD
Xem chi tiết
HC
Xem chi tiết
AH
6 tháng 2 2024 lúc 0:05

Lời giải:

$p>3$ và $p$ nguyên tố nên $p$ lẻ

$\Rightarrow p+1$ chẵn $\Rightarrow p+1\vdots 2(1)$

Mặt khác:

$p>3$ và $p$ nguyên tố nên $p$ không chia hết cho $3$

$\Rightarrow p=3k+1$ hoặc $p=3k+2$ với $k$ tự nhiên.

Nếu $p=3k+1$ thì $2p+1=2(3k+1)+1=3(2k+1)\vdots 3$. Mà $2p+1>3$ nên không thể là số nguyên tố (trái đề bài) 

$\Rightarrow p=3k+2$
Khi đó:

$p+1=3k+3\vdots 3(2)$
Từ $(1); (2)$, mà $(2,3)=1$ nên $p+1\vdots (2.3)$ hay $p+1\vdots 6$

Bình luận (0)
KG
Xem chi tiết
H24
Xem chi tiết
H24
13 tháng 6 2018 lúc 14:06

vì p là SNT lớn lơn 3 => p có dạng: 3k+1 hoặc 3k+2( k thuộc N*)

TH1: p=3k+1

=> 2p+1=2.(3k+1)+1=6k+2+1=6k+3 chia hết cho 3 ( TM)

TH2: p=3k+2

=> 4p+1=4.(3k+2)+1=12k+8+1=12k+9 chia hết cho 3(TM)

vậy nếu p là SNT lớn hơn 3 và  2p+1 cũng là số nguyên tố thì 4p+1 là hợp số

Bình luận (0)