Những câu hỏi liên quan
EG
Xem chi tiết
VC
16 tháng 8 2018 lúc 20:07

Ta có \(\left|2000x+2012\right|+\left|2013-2000x\right|\ge\left|2000x+2012+2013-2000x\right|=\left|4025\right|=4025\)

^.^

Bình luận (0)
EG
16 tháng 8 2018 lúc 20:14

thank

Bình luận (0)
KM
Xem chi tiết
MS
19 tháng 10 2017 lúc 19:23

Áp dụng bđt: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

Trở lại bài toán ta có:

\(C=\left|2000x+2016\right|+\left|2000x-2017\right|\)

\(C=\left|2000x+2016\right|+\left|2017-2000x\right|\)

\(C\ge\left|2000x+2016+2017-2000x\right|=4033\)

Dấu "=" xảy ra khi:

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}2000x+2016\ge0\\2017-2000x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}2000x+2016\le0\\2017-2000x\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2000x\ge-2016\\2000x\le2017\end{matrix}\right.\\loại\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{2016}{2000}\\x\le\dfrac{2017}{2000}\end{matrix}\right.\)

Vậy \(-\dfrac{2016}{2000}\le x\le\dfrac{2017}{2000}\)

Bình luận (3)
LN
Xem chi tiết
H24
Xem chi tiết
NV
Xem chi tiết
XO
8 tháng 6 2020 lúc 21:32

Ta có f(1999) = 19992015 - 2000.19992004 + 2000.19992013 - 2000.19992012 + .... + 2000.1999 - 1

                      = 19992015 - 2000(19992014 - 19992013 + 19992012 - .... - 2000.1999) - 1

         Đặt C = 19992014 - 19992013 + 19992012 - .... - 2000.1999

  Khi đó : f(1999) = 19992015 - 2000C - 1

Ta có : C = 19992014 - 19992013 + 19992012 - .... - 2000.1999

=> 1999C = 19992015 - 19992014 + 19992013 - .... - 2000.19992

Lấy 1999C cộng C theo vế ta có : 

1999C + C = (19992015 - 19992014 + 19992013 - .... - 2000.19992) + (19992014 - 19992013 + 19992012 - .... - 2000.1999)

      2000C = 19992015 - 2000.1999

=> f(1999) = 19992015 - 19992015 +  2000.1999 - 1 = 2000.1999 + 1

    

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
MK
Xem chi tiết
DH
19 tháng 10 2017 lúc 20:07

Ta có:  C= |2000x+2016|+|2000x-2017|

       => C = |2000x+2016+2000x-2017|

                =  4000x-1 <= -1

Dấu "=" xảy ra khi 4000x=0 => x=0

Vậy Cmax=-1 khi x=0

Không chắc. Chúc bạn học giỏi!

Bình luận (0)
TT
11 tháng 3 2018 lúc 21:27

C=|2000x+2016|+|2000x-2017|=|2000x+2016|+|2017-2000x|

Áp dụng : |A|+|B|>=|A+B|

dấu "=" xảy ra <=>A.B=0 ta có

C=|2000x+2016|+|2017-2000x|>=|2000x+2016+2017-200x|=4033

dấu "=" xảy ra <=>(2000x+2016).(2017-2000x)=0

<=>2000x+2016=0=>2000x=-2016=>x=1.008

     hoặc 2017-2000x=0=>x=2017:2000=1,0085

vaayjMaxC=4033<=>x=.......

Bình luận (0)
H24
Xem chi tiết
BT
8 tháng 11 2019 lúc 15:46

sửa lại chút nè \(A=\frac{x^2-2x+2007}{2007x^2}\)

\(=\frac{2007x^2-2x\cdot2007+2007^2}{2007x^2}\)

\(=\frac{x^2-2x\cdot2007+2007^2}{2007x^2}+\frac{2006x^2}{2007x^2}\)

\(=\frac{\left(x-2007\right)^2}{2007x^2}+\frac{2006}{2007}\ge\frac{2006}{2007}\)

Vậy \(A_{min}=\frac{2006}{2007}\)khi \(x-2007=0\Leftrightarrow x=2007\)

Bình luận (0)
 Khách vãng lai đã xóa
NC
8 tháng 11 2019 lúc 16:45

@ Bình ơi @ Em sai từ dòng đầu xuống dòng 2. 

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
HN
15 tháng 8 2021 lúc 14:39

\(C=\dfrac{2014\left(2015^2+2016\right)-2016\left(2015^2-2014\right)}{2014\left(2013^2-2012\right)-2012\left(2013^2+2014\right)}\)

\(=\dfrac{2.2014.2016+2014.2015^2-2016.2015^2}{2014.2013^2-2012.2013^2-2.2012.2014}\)

\(=\dfrac{2.\left(2015+1\right)\left(2015-1\right)-2.2015^2}{2.2013^2-2.\left(2013+1\right)\left(2013-1\right)}\)

\(=\dfrac{2.\left(2015^2-1\right)-2.2015^2}{2.2013^2-2.\left(2013^2-1\right)}=\dfrac{-2}{2}=-1\)

Bình luận (0)