cho một số có 3 chữ số ,nếu chữ số hàng chục tăng lên 3 lần thì số đó tăng lên mấy đơn vị
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1. Tìm một số tự nhiên có có 2 chữ số,biết rằng nếu viết thêm chữ số 0 xen giữa chữ số hàng chục và hàng đơn vị của số đó ta được số lớn gấp 10 lần số đã cho,nếu viết thêm chữ số 1 vào bên trái số vừa nhận được thì số đó lại tăng lên 3 lần
2.Cho số có 4 chữ số có 4 chữ số .Nếu ta xóa đi chữ số hàng chục và hàng đơn vị thì số đó giảm đi 4455 đơn vị.Tìm số đó
1,
gọi ab là số cần tìm (a khác 0)
gọi a0b là số ab sau khi thêm 0 vào chính giữa
gọi 1a0b là số a0b sau khi thêm 1 vào bên trái
ta có:
ab x 10=a0b
(ax10+bx1)x10=a0b
ax100+bx10=ax100+bx1
bx10=b(cùng trừ 2 vế cho a*100)
vì b x10=b nên b chỉ có thể là 0
vì b=0 nên ab=a0 và a0b=a00
ta lại có : a00x 3=1a00
a00 x 3=1000+a00
a00 x 2=1000(cùng trừ hai vế cho a00)
a00=1000:2
a=5
Vậy ab = 50
Tìm 1 số có 2 chữ số có chữ số hàng đơn vị gấp 4 lần chữ số hàng chục. Nếu đổi chỗ hai chữ số cho nhau thì số đó tăng lên 54 đơn vị.
Bài 3: Tìm một số tự nhiên có 2 chữ số, biết rằng nếu viết chữ số 0 xen giữa chữ số hàng chục và hàng đơn vị của số đó ta được số lớn gấp 10 lần số đã cho, nếu viết thêm chữ số 1 vào bên trái số vừa nhận dược thì số đó lại tăng lên 3 lần.
Hiệu số phần bằng nhau sau khi thêm số 1 ở bên trái số vừa nhận được:
3-1=2(phần)
Số có 4 chữ số sau khi thêm số 1 bên trái số có 3 chữ số thì tăng 1000 đơn vị
Số có 3 chữ số là:
1000:2 x 1= 500
Số ban đầu cần tìm:
500: 10 = 50
Đáp số: 50
Bài 3: Tìm một số tự nhiên có 2 chữ số, biết rằng nếu viết chữ số 0 xen giữa chữ số hàng chục và hàng đơn vị của số đó ta được số lớn gấp 10 lần số đã cho, nếu viết thêm chữ số 1 vào bên trái số vừa nhận dược thì số đó lại tăng lên 3 lần.
Gọi số tự nhiên có 2 chữ số là \(\overline{\overline{ab}}\left(a\ne0\right)\)
Theo bài cho (1), ta có: \(\overline{\overline{ab}\times10=\overline{a0b}}\)
\(\left(a\times10+b\right)\times10=a\times100+b\)
\(a\times100+b\times10=a\times100+b\)
\(a\times100-a\times100+b\times10-b=0\)
\(b\times9=0\)
\(b=0\)
Theo bài cho (2), ta có: \(\overline{\overline{1a0b}=3\times\overline{a0b}}\)
Thay b=0 , ta có:
\(\overline{\overline{1a00}=3\times\overline{a00}}\)
\(3\times a\times100=1000+a\times100\)
\(3\times a\times100-a\times100=1000\)
\(a\times100\times\left(3-1\right)=1000\)
\(a\times2=1000\div100\)
\(a\times2=10\)
\(a=5\)
Vậy số tự nhiên có 2 chữ số cần tìm là 50
Tìm một số tự nhiên có 3 chữ số biết rằng nếu tăng chữ số hàng trăm lên n đơn vị đồng thời giảm chữ số hàng chục và chữ số hàng đơn vị đi n đơn vị thì được số có 3 chữ số gấp n lần số ban đầu
Gọi số cần tìm là \(\overline{abc}\), trong đó a, b, c là các chữ số và a khác 0.
Nếu tăng chữ số hàng trăm lên n đơn vị đồng thời giảm chữ số hàng chục và chữ số hàng đơn vị đi n đơn vị thì ta được số:
\(\overline{\left(a+n\right)\left(b-n\right)\left(c-n\right)}\)
Theo bài ra ta có:
\(\overline{\left(a+n\right)\left(b-n\right)\left(c-n\right)}=n.\overline{abc}\)
\(100\left(a+n\right)+10\left(b-n\right)+c-n=n\left(100a+10b+c\right)\)
\(100a+10b+c-100na-10nb-nc+89n=0\)
\(100a\left(1-n\right)+10b\left(1-n\right)+c\left(1-n\right)+89n=0\)
\(\left(100a+10b+c\right)\left(1-n\right)=-89n\)
\(\overline{abc}\left(n-1\right)=89n\)
Do 89 là số nguyên tố nên \(\orbr{\begin{cases}\overline{abc}\inƯ\left(89\right)\\n-1\inƯ\left(89\right)\end{cases}}\)
Do \(\overline{abc}>100\) nên \(\overline{abc}\) không thể là ước 89.
Vậy nên \(n-1\inƯ\left(89\right)\)
Do n < 9 nên n - 1 = 1 hay n = 2.
Từ đó suy ra \(\overline{abc}=89.2=178\)
Vậy số cần tìm là 178.
Tìm một số tự nhiên có 2 chữ số, biết rằng nếu viết chữ số 0 xen giữa chữ số hàng chục và hàng đơn vị của số đó ta được số lớn gấp 10 lần số đã cho, nếu viết thêm chữ số 1 vào bên trái số vừa nhận dược thì số đó lại tăng lên 3 lần.
Gọi số phải tìm là ab. Viết thêm chữ số 0xen giữa chữ số hàng chục và hàng đơn vị ta được số a0b. Theo bài ra ta có :
ab x 10 = a0b
Vậy b = 0 và số phải tìm có dạng a00. Viết thêm chữ số 1 vào bên trái số a00 ta được số 1a00. Theo bài ra ta có :
1a00 = 3 x a00
Giải ra ta được a = 5 .Số phải tìm là 50
Tìm một số tự nhiên có 2 chữ số, biết rằng nếu viết chữ số 0 xen giữa chữ số hàng chục và hàng đơn vị của số đó ta được số lớn gấp 10 lần số đã cho, nếu viết thêm chữ số 1 vào bên trái số vừa nhận dược thì số đó lại tăng lên 3 lần.
Gọi số phải tìm là ab. Viết thêm chữ số 0xen giữa chữ số hàng chục và hàng đơn vị ta được số a0b. Theo bài ra ta có:
ab x 10 = a0b
Vậy b = 0 và số phải tìm có dạng a00. Viết thêm chữ số 1 vào bên trái số a00 ta được số 1a00. Theo bài ra ta có:
1a00 = 3 x a00
Giải ra ta được a = 5 .Số phải tìm là 50
Tìm một số tự nhiên có 2 chữ số, biết rằng nếu viết chữ số 0 xen giữa chữ số hàng chục và hàng đơn vị của số đó ta được số lớn gấp 10 lần số đã cho, nếu viết thêm chữ số 1 vào bên trái số vừa nhận dược thì số đó lại tăng lên 3 lần.
Gọi số phải tìm là ab. Viết thêm chữ số 0 xen giữa chữ số hàng chục và hàng đơn vị ta được số a0b. Theo bài ra ta có:
ab × 10 = a0b
Vậy b = 0 và số phải tìm có dạng a00. Viết thêm chữ số 1 vào bên trái số a00 ta được số 1a00. Theo bài ra ta có:
1a00 = 3 × a00
Giải ra ta được a = 5 .Số phải tìm là 50
Tìm một số tự nhiên có 2 chữ số, biết rằng nếu viết chữ số 0 xen giữa chữ số hàng chục và hàng đơn vị của số đó ta được số lớn gấp 10 lần số đã cho, nếu viết thêm chữ số 1 vào bên trái số vừa nhận dược thì số đó lại tăng lên 3 lần.
gọi ab là số cần tìm (a khác 0)
gọi a0b là số ab sau khi thêm 0 vào chính giữa
gọi 1a0b là số a0b sau khi thêm 1 vào bên trái
ta có:ab*10=a0b
(a*10+b*1)*10=a0b
a*100+b*10=a*100+b*1
b*10=b(cùng trừ 2 vế cho a*100)
vì b*10=b nên b chỉ có thể là 0
vì b=0 nên ab=a0 và a0b=a00
ta lại có : a00*3=1a00
a00*3=1000+a00
a00*2=1000(cùng trừ hai vế cho a00)
a00=1000:2
a00=500
a=5(cùng chia hai vế cho 100)
từ trước ta có b=0 nên ab = 50
Tìm một số tự nhiên có 2 chữ số, biết rằng nếu viết chữ số 0 xen giữa chữ số hàng chục và hàng đơn vị của số đó ta được số lớn gấp 10 lần số đã cho, nếu viết thêm chữ số 1 vào bên trái số vừa nhận dược thì số đó lại tăng lên 3 lần.
Gọi số phải tìm là ab. Viết thêm chữ số 0xen giữa chữ số hàng chục và hàng đơn vị ta được số a0b. Theo bài ra ta có :
ab x 10 = a0b
Vậy b = 0 và số phải tìm có dạng a00. Viết thêm chữ số 1 vào bên trái số a00 ta được số 1a00. Theo bài ra ta có :
1a00 = 3 x a00
Giải ra ta được a = 5 .Số phải tìm là 50