Cho x,y thuộc N. CMR : Nếu ( 2x+y) chia hết cho 9 thì (5x+7) chia hết cho 9
Cho x,y thuộc Z . CMR :
a) Nếu A= 5x +y chia hết cho 9 thì B = 4x -3y cũng chia hết cho 9
b) Nếu C = 4x + 3y chia hết cho 13 thì D = 7x +2y cũng chia hết cho 13
Cho x,y thuộc Z và 2x+y chia hết cho 9. CMR: 5x+7y chia hết cho 9.
Giải:
Ta có: \(\left(2x+y\right)⋮9\Leftrightarrow5\left(2x+y\right)⋮9\)
\(\Leftrightarrow\left(10x+5y\right)⋮9.\) Do \(9y⋮9\) nên:
\(\left(10x+5y+9y\right)⋮9\Leftrightarrow\left(10x+14y\right)⋮9\)
\(\Leftrightarrow2\left(5x+7y\right)⋮9.\) Mà \(\left(2;9\right)=1\)
\(\Leftrightarrow\left(5x+7y\right)⋮9\)
Vậy \(\left(2x+y\right)⋮9\Leftrightarrow\left(5x+7y\right)⋮9\) (Đpcm)
\(2x+y⋮9\\ \Rightarrow2\left(2x+y\right)⋮9\\ \Rightarrow4x+2y⋮9\)
Ta có : \(\left(4x+2y\right)+\left(5x+7y\right)=9\left(x+y\right)⋮9\)
Vì 4x +2y và 9(x+y) chia hết cho 9 nên 5x+7y chia hết cho 9
Ta có: \(2x+y=7\left(2x+y\right)=14x+7y\)
Vì \(2x+y⋮9\)
\(\Rightarrow14x+7y⋮9\)
Mà \(9x⋮9\)
\(\Rightarrow14x+7y-9x=5x+7y⋮9\) (đpcm)
cmr 2x+y chia hết cho 9 tHÌ 5x=7Y CHIA HẾT CHO 9 VÀ NGƯỢC LẠI
bài 1
Cho biết 3a + 2b chia hết cho 17 ( a, b thuộc N) .Chứng minh rằng 10a+b chia hết cho 17
bài 2
Cho biết a-5b chia hết cho 17 (a, b thuộc N).Chứng minh rằng 10a+b chia hết cho 17
bài 3
a, CMR : nếu a3x+5y chia hết cho 7 thì x + 4y chia hết cho 7 ( x,y thuộc N ). Điều ngược lại có đúng ko?
b, CMR : nếu 2x+3y chia hết cho 17 thì 9x + 5y chia hết cho 17 ( x,y thuộc N ) . Điều ngược lại có đúng ko?
sssssssssssss
bài 1
Cho biết 3a + 2b chia hết cho 17 ( a, b thuộc N) .Chứng minh rằng 10a+b chia hết cho 17
bài 2
Cho biết a-5b chia hết cho 17 (a, b thuộc N).Chứng minh rằng 10a+b chia hết cho 17
bài 3
a, CMR : nếu a3x+5y chia hết cho 7 thì x + 4y chia hết cho 7 ( x,y thuộc N ). Điều ngược lại có đúng ko?
b, CMR : nếu 2x+3y chia hết cho 17 thì 9x + 5y chia hết cho 17 ( x,y thuộc N ) . Điều ngược lại có đúng ko?
1 giải
Ta có 17 chia hết cho 17
suy ra 17a+3a+b chia hết cho 17
suy ra 20a+2b chia hết cho 17
rút gọn cho 2
suy ra 10a+b chia hét cho 17
2 giải
* nếu a-5b chia hết cho 17 thì 10a + b chia hết cho 17
vì a-5b chia hết cho 17 nên 10(a-5b) chia hết cho 17 => 10a-50b chia hết cho 17 => 10a-50b+51b chia hết cho 17 hay 10a + b chia hết cho 17 (1) *
nếu 10a + b chia hết cho 17 thì a-5b chia hết cho 17
vì 10a+b chia hết cho 17 nên 10a + b - 51b chia hết cho 17 => 10a - 50b chia hết cho 17 => 10(a-5) chia hết cho 17 mà (10;17)=1 nên a-5b chia hết cho 17 (2)
Từ (1) và (2) suy ra điều phải chứng minh
3 bó tay
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
a) Chứng minh rằng : nếu 2x + y chia hết 9 thì 5x + 7y chia hết cho 9
b)cho p là số nguyên tố lớn hơn 3 và p +2 cũng là sô nguyên tố. CMR: p+1 chia hết cho 6
a)2x+y=7(2x+y)=14x+7y
Do 2x+9 chia hết cho 9 =>14x+7y chia hết cho 9
9x chia hết cho 9 =>14x+7y-9x=5x+7y chia hết cho 9
b)p và p+2 là số nguyên tố lớn hơn 3 nên p+p+2=2p+2 chia hết cho 2
p là số nguyên tố lớn hơn 3 nên
*)P=3k(loại vì 3k là hợp số có ước là 3 và k)
*)p=3k+1(loại vì số nguyên tố lớn hơn 3 là số lẻ =>3k+1 là số chẵn)
*)p=3k+2(TM)
=>2p+2=6k+4+2=6k+6 chia hết cho 3
2p+2 chia hết cho 2 và 3=>2p+2 chia hết cho 6
=>(2p+2).1/2=p+1 chia hết cho 6
Chứng minh rằng: nếu 2x+y chia hết cho 9 thì 5x+7y cũng chia hết cho 9
Ta có
\(9x+9y⋮9\)
\(2x+y⋮9\Rightarrow2\left(2x+y\right)=4x+2y⋮9\)
\(\Rightarrow9x+9y-\left(4x+2y\right)=5x+7y⋮9\)
Chứng minh rằng nếu x, y thuộc N, x + 2y chia hết cho 7 thì 5x - 4y chia hết cho 7
x + 2y chia hết cho 7 => 5(x + 2y) = 5x + 10y chia hết cho 7 => 5x + 10y - 14y = 5x - 4y chia hết cho 7 (vì 14y chia hết cho 7)
cho x;y thuộc N .CMR nếu x+3y chia hết cho 7 thì 3x +2y chia hết cho7