Tìm x, y biết:
Ix-2013I + Ix-2014I + Iy-2015I + Ix-2016I = 3
Tìm x, y biết:
Ix-2013I + Ix-2014I + Iy-2015I + Ix-2016I = 3
A=Ix-2014I + Ix-2015I + Ix-2016I
thách ai làm được
tim gia tri nho nhat
Tìm giá trị nhỏ nhất của C=Ix-2013I+Ix-2014I.
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(C=\left|x-2013\right|+\left|x-2014\right|\)
\(=\left|x-2013\right|+\left|2014-x\right|\)
\(\ge\left|x-2013+2014-x\right|=1\)
Dấu "=" khi \(2013\le x\le2014\)
Vậy \(Min_C=1\) khi \(2013\le x\le2014\)
tinh GTNN A= I x+2014I+Ix+2015I+2016
có phải làm thế này ko
A=Ix+2014I+Ix+2015I+2016=Ix+2014I+I-x+2015I+2016>= Ix+2014-x-2015I+2016
=I-1I+2016=1+2016=>A>=1
Tìm x biết: Ix+2016I+Ix+2017I+2018=3x
Tìm giá trị nhỏ nhất của biểu thức A=Ix-2010I+Ix-2012I+Ix-2014I
Vì |x-2010| ≧ 0 với mọi x
|x-2012| ≧ 0 với mọi x
|x-2014| ≧ 0 với mọix
Suy ra : |x-2010|+|x-2012|+|x-2014| ≧ 0
hay A ≧ 0
Dấu =xảy ra <=> \(\hept{\begin{cases}\left|x-2010\right|=0\\\left|x-2012\right|=0\\\left|x-2014\right|=0\end{cases}}\)<=>\(\hept{\begin{cases}x-2010=0\\x-2012=0\\x-2014=0\end{cases}}\)<=>\(\hept{\begin{cases}x=2010\\x=2012\\x=2014\end{cases}}\)
Vậy GTNN(A) = 0 <=> x ∈ { 2010;2012;2014}
Từ đầu đến A>= 0 là đúng nhưng dưới là sai nhé bạn!
Tim x biet:Ix+1I+Ix+2I+Ix+3I+.....+Ix+2016I=2015x
Tìm x,y
a) Ix-1I + Ix+2I =0
b) I2x-1I + Iy^2-yI = 0
c) Ix+1I + Ix+2I =3
#)Giải :
a) \(\left|x-1\right|+\left|x+2\right|=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}}\)
b) \(\left|2x-1\right|+\left|y^2-y\right|=0\Leftrightarrow\orbr{\begin{cases}2x-1=0\\y^2-y=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=1\\y^2=y\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{2}\\y\in\left\{-1;0;1\right\}\end{cases}}}\)
tìm các số nguyên x thỏa mãn:
a) Ix+2016I+Ix+2017I=1
b) IIx+5I-4I=3
c) Ix-5I+x-5=0
Giúp mình từng đó nhanh nhé!
Thanks!