Những câu hỏi liên quan
PB
Xem chi tiết
CT
30 tháng 5 2017 lúc 12:03

(P⇒Q) đúng, (Q⇒P) sai

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 6 2018 lúc 6:34

(P ⇒Q): “Nếu AB = AC thì tam giác ABC cân”.

    Mệnh đề đảo (Q ⇒ P): “Nếu tam giác ABC cân thì AB = AC”.

Bình luận (0)
PB
Xem chi tiết
CT
14 tháng 1 2017 lúc 12:28

a) Nếu ABC là một tam giác cân thì ABC là tam giác đều

Đây là mệnh đề sai

b) Nếu ABC là một tam giác cân và có một góc bằng 60o thì ABC là một tam giác đều

Đây là mệnh đề đúng

Bình luận (0)
QL
Xem chi tiết
HM
23 tháng 9 2023 lúc 10:47

4 cách phát biểu mệnh đề \(P \Leftrightarrow Q\):

“Tam giác ABC cân tương đương nó có hai đường cao bằng nhau”

“Tam giác ABC cân là điều kiện cần và đủ để nó có hai đường cao bằng nhau”

“Tam giác ABC cân khi và chỉ khi nó có hai đường cao bằng nhau”

“Tam giác ABC cân nếu và chỉ nếu nó có hai đường cao bằng nhau”

Bình luận (0)
SK
Xem chi tiết
NH
17 tháng 5 2017 lúc 7:39

a) "Nếu ABC là một tam giác đều thì AB = BC = CA", cả hai mệnh đề đều đúng

b) "Nếu \(\widehat{C}>\widehat{A}\) thì AB > BC". Cả hai mệnh đề đều đúng

c) "Nếu ABC là một tam giác vuông thì \(\widehat{A}=90^0\)"

Nếu tam giác ABC vuông tại B (hoặc C) thì mệnh đề đảo sai

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 1 2020 lúc 7:00

Bình luận (0)
QL
Xem chi tiết
HM
23 tháng 9 2023 lúc 10:45

P: “tam giác ABC vuông tại A”

Q: “tam giác ABC có \(A{B^2} + A{C^2} = B{C^2}\)”

+) Mệnh đề \(Q \Rightarrow P\) là “Nếu tam giác ABC có \(A{B^2} + A{C^2} = B{C^2}\)thì tam giác ABC vuông tại A”

+) Từ định lí Pytago, ta có:

Tam giác ABC vuông tại A thì \(A{B^2} + A{C^2} = B{C^2}\)

Và: Tam giác ABC có \(A{B^2} + A{C^2} = B{C^2}\) thì vuông tại A.

Do vậy, hai mệnh đề “\(P \Rightarrow Q\)” và “\(Q \Rightarrow P\)” đều đúng.

Bình luận (0)
TP
Xem chi tiết
NT
12 tháng 9 2021 lúc 14:31

a: Nếu AB=BC=CA thì ΔBAC không là tam giác đều

Bình luận (0)
QL
Xem chi tiết
HM
24 tháng 9 2023 lúc 10:41

Phát biểu: “Tam giác ABC là tam giác vuông khi và chỉ khi tam giác ABC có một góc bằng tổng hai góc còn lại”.

Mệnh đề này đúng.

Thật vậy, giả sử ba góc của tam giác ABC lần lượt là \(x,y,z\;\) (đơn vị \({^o}\)).

Ta có: tam giác ABC có một góc bằng tổng hai góc còn lại.

Không mất tính tổng quát, giả sử: \(x=y+z\)

\(\Leftrightarrow  2x ={180^o} \) (vì \(x + y + z = {180^o}\)).

 \(\Leftrightarrow  x ={90^o}  \)

Vậy tam giác ABC vuông.

Bình luận (0)