Cho tam giác ABC. Xét các mệnh đề P : "AB = AC"; Q : "Tam giác ABC cân"
a) Phát biểu mệnh đề \(P\Rightarrow Q\) và mệnh đề đảo của nó ?
b) Xét tính đúng, sai của cả hai mệnh đề trên ?
Cho tam giác ABC. Xét các mệnh đề P: “AB = AC”, Q: “Tam giác ABC cân”. Xét tính đúng, sai của cả hai mệnh đề trên
Cho tam giác ABC. Xét các mệnh đề P: “AB = AC”, Q: “Tam giác ABC cân”. Phát biểu mệnh đề P ⇒ Q và mệnh đề đảo của nó
(P ⇒Q): “Nếu AB = AC thì tam giác ABC cân”.
Mệnh đề đảo (Q ⇒ P): “Nếu tam giác ABC cân thì AB = AC”.
Cho tam giác ABC. Xét các mệnh đề dạng P ⇒ Q sau
a)Nếu ABC là một tam giác đều thì ABC là một tam giác cân.
b)Nếu ABC là một tam giác đều thì ABC là một tam giác cân và có một góc bằng 60o
Hãy phát biểu các mệnh đề Q ⇒ P tương ứng và xét tính đúng sai của chúng.
a) Nếu ABC là một tam giác cân thì ABC là tam giác đều
Đây là mệnh đề sai
b) Nếu ABC là một tam giác cân và có một góc bằng 60o thì ABC là một tam giác đều
Đây là mệnh đề đúng
Cho tam giác ABC. Xét các mệnh đề:
P: “Tam giác ABC cân”.
Q: “Tam giác ABC có hai đường cao bằng nhau”.
Phát biểu mệnh đề \(P \Leftrightarrow Q\) bằng bốn cách.
4 cách phát biểu mệnh đề \(P \Leftrightarrow Q\):
“Tam giác ABC cân tương đương nó có hai đường cao bằng nhau”
“Tam giác ABC cân là điều kiện cần và đủ để nó có hai đường cao bằng nhau”
“Tam giác ABC cân khi và chỉ khi nó có hai đường cao bằng nhau”
“Tam giác ABC cân nếu và chỉ nếu nó có hai đường cao bằng nhau”
Cho tam giác ABC. Phát biểu mệnh đề đảo của các mệnh đề sau và xét tính đúng sai của chúng ?
a) Nếu AB = BC = CA thì tam giác ABC là một tam giác đều.
b) Nếu AB > BC thì \(\widehat{C}>\overrightarrow{A}\)
c) Nếu \(\widehat{A}=90^0\) thì ABC là một tam giác vuông
a) "Nếu ABC là một tam giác đều thì AB = BC = CA", cả hai mệnh đề đều đúng
b) "Nếu \(\widehat{C}>\widehat{A}\) thì AB > BC". Cả hai mệnh đề đều đúng
c) "Nếu ABC là một tam giác vuông thì \(\widehat{A}=90^0\)"
Nếu tam giác ABC vuông tại B (hoặc C) thì mệnh đề đảo sai
Cho tam giác ABC. Gọi M, N lần lượt là trung điểm các cạnh AB, AC. Mệnh đề nào sau đây là sai?
A. AN → = NC →
B. MN → = 1 2 BC →
C. MA → = MB →
D. BC → = 2 NM →
Cho tam giác ABC. Xét mệnh đề dạng \(P \Rightarrow Q\) như sau:
“Nếu tam giác ABC vuông tại A thì tam giác ABC có \(A{B^2} + A{C^2} = B{C^2}\)”.
Phát biểu mệnh đề \(Q \Rightarrow P\) và xác định tính đúng sai của hai mệnh đề \(P \Rightarrow Q\) và \(Q \Rightarrow P\).
P: “tam giác ABC vuông tại A”
Q: “tam giác ABC có \(A{B^2} + A{C^2} = B{C^2}\)”
+) Mệnh đề \(Q \Rightarrow P\) là “Nếu tam giác ABC có \(A{B^2} + A{C^2} = B{C^2}\)thì tam giác ABC vuông tại A”
+) Từ định lí Pytago, ta có:
Tam giác ABC vuông tại A thì \(A{B^2} + A{C^2} = B{C^2}\)
Và: Tam giác ABC có \(A{B^2} + A{C^2} = B{C^2}\) thì vuông tại A.
Do vậy, hai mệnh đề “\(P \Rightarrow Q\)” và “\(Q \Rightarrow P\)” đều đúng.
Bài 9. Cho tam giác ABC. Phát biểu mệnh đề đảo của các mệnh đề sau: a) Nếu AB BC CA thì tam giác ABC đều; b) Nếu AB BC thì C A ; c) Nếu 0 A 90 thì ABC là tam giác vuông
a: Nếu AB=BC=CA thì ΔBAC không là tam giác đều
Cho hai câu sau:
P: “Tam giác ABC là tam giác vuông”;
Q: “Tam giác ABC có một góc bằng tổng hai góc còn lại”
Hãy phát biểu mệnh đề tương đương \(P \Leftrightarrow Q\) và xét tính đúng sai của mệnh đề này.
Phát biểu: “Tam giác ABC là tam giác vuông khi và chỉ khi tam giác ABC có một góc bằng tổng hai góc còn lại”.
Mệnh đề này đúng.
Thật vậy, giả sử ba góc của tam giác ABC lần lượt là \(x,y,z\;\) (đơn vị \({^o}\)).
Ta có: tam giác ABC có một góc bằng tổng hai góc còn lại.
Không mất tính tổng quát, giả sử: \(x=y+z\)
\(\Leftrightarrow 2x ={180^o} \) (vì \(x + y + z = {180^o}\)).
\(\Leftrightarrow x ={90^o} \)
Vậy tam giác ABC vuông.