chứng minh rằng A= n^4 + 6n^3 + 11n^2 + 6n chia hết cho 24 với mọi số tự nhiên
chứng minh rằng với mọi số tự nhiên n ta đều có: A= n4+6n3+11n2+6n chia hết cho 24
@Tuấn Anh Phan Nguyễn Copy không nhìn hả :vvv đề bài n4 + 6n3 + 11n2 + 6n biến thành n4 + 6n3 + 11n2 + 30n - 24 luôn kìa. Hơn nữa với pp quy nạp cần xét n = 1 :vvvv
Chứng minh rằng: \(n^4+6n^3+11n^2+6n\) chia hết cho 24 với mọi số tự nhiên n
chứng minh rằng n4+6n3+11n2+6n chia hết cho 24 với mọi n là số tự nhiên
dat A(n) = n^4+6n^3+11n^2+6n va A chia het cho 24 (1)
+) voi n = 1 => A = 24 chia het cho 24. vay (1) dung voi n = 1.(*)
+) gia su (1) dung voi n = k tuc la A(k) = k^4+6k^3+11k^2+6k chia het cho 24 (**).
+) gio ta phai chung minh (1) cung dung voi n = (k+1). that vay ta co:
A(k+1) = (k+1)^4+6(k+1)^3+11(k+1)^2+6(k+1) = (k+1)[(k+1)^3+6(k+1)^2+11(k+1)+6] =
= (k+1)(k+2)[(k+1)^2+5(k+1)+6] = (k+1)(k+2)(k+3)(k+4)
nhan thay A(k+1) la tich cua so tu nhien lien tiep=> A(k+1) chia het cho 24 (***)
tu (*) (**) va (***) => A(n) = n^4+6n^3+11n^2+6n chia het cho 24 voi moi n thuoc N(*).
Phân tích n^4+6n^3+n^2+6n thành: n(n+)(n+2)(n+3)
Nhận thấy:n,(n+),(n+2),(n+3) là 4 số nguyên liên tiếp với n nguyên
=> n(n+)(n+2)(n+3)chia hết cho 24
=>n^4+6n^3+n^2+6n chia hết cho 24
tick đúng cho mình nhé !
Phân tích n^4+6n^3+n^2+6n thành: n(n+)(n+2)(n+3)
Nhận thấy:n,(n+),(n+2),(n+3) là 4 số tự nhiên liên tiếp với n là số tự nhiên.
=> n(n+)(n+2)(n+3)chia hết cho 24
=> n^4+6n^3+n^2+6n chia hết cho 24
tick đúng cho mình nhé !
chứng minh rằng với mọi số tự nhiên n ta đều có: \(A=n^4+6n^3+11n^2+6n\) chia hết cho 24
\(A=n^4+6n^3+11n^2+6n\)
\(=n\left(n^3+6n^2+11n+6\right)\)
\(=n\left(n^3+n^2+5n^2+5n+6n+6\right)\)
\(=n\left[n^2\left(n+1\right)+5n\left(n+1\right)+6\left(n+1\right)\right]\)
\(=n\left(n+1\right)\left(n^2+5n+6\right)\)
\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Do đây là tích 4 số nguyên liên tiếp nên nó vừa chia hết cho \(2,3,4\Rightarrow A\) chia hết cho
Chứng minh rằng với mọi số tự nhiên n thì: \(n^{\text{4}}+6n^3+11n^2+30n-24\) chia hết cho 24
(n4+6n3+11n2+6n)+24n-24n
= (n4+n3+5n3+5n2+6n2+6)+24.(n-1)
= (n+1)(n3+5n2+6n)+24.(n-1)
=n(n+1)(n2+5n+6)+24.(n-1)
= n(n+1)(n2+3n+2n+6)+24(n-1)
=n(n+1)(n+2)(n+3)+24(n-1)
Vi 4 so tu nhien lien tiep chia het cho 24
=> n(n+1)(n+2)(n+3)⋮24 va 24(n-1)⋮24
=> dpcm
Chứng minh rằng n4+6n3+11n2+6n chia hết cho 24 với mọi n thuộc N.
Ta có:
n4+6n3+11n2+6n = n4+2n3+4n3+8n2+3n2+6n = (n4+2n3)+(4n3+8n2)+(3n2+6n) = n3(n+2)+4n2(n+2)+3n(n+2)
= (n+2)(n3+4n2+3n) = (n+2)n(n2+3n) = n(n+1)(n+2)(n+3)
Vì tích 4 số tự nhiên liên tiếp luôn chia hết cho 24 nên n4+2n3+4n3+8n2+3n2+6n chia hết cho 24.
Chứng minh rằng: n4 + 6n3 + 11n2 +6n chia hết cho 24 với mọi n thuộc N
Phân tích đa thức thành nhân tử
Câu 1 ( 4x^2 - 7x -50 )^2 - 16x^4 - 56x^3 - 49x^2
Câu 2 x^m+3 .y - x^m+1. Y^3 -x^3 .y ^ m+1 + xy^m+3
Câu 3 Chứng minh rằng với mọi số tự nhiên n thì n^4 +6n^3 + 11n^ 2 +6n chia hết cho 24
\(\left(4x^2-7x-50\right)^2-16x^4-56x^3-49x^2\)
\(\text{Phân tích thành nhân tử}\)
\(\left(-4\right)\left(2x-5\right)\left(7x+25\right)\)
\(x^m+3.y-x^m+1.Y^3-x^3.y^m+1+xy^m+3\)
\(\text{Phân tích thành nhân tử}\)
\(-\left(x^3y^m-xy^m-y^3-3y-4\right)\)
Câu 3 ko hiểu >o<
hài bài khó quá mình cũng học lớp 8 nhưng kho lắm
Chứng minh rằng: n^4+6n^3+11n^2+6n chia hết cho 24
nhanh ạ
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
t A(n) = n^4+6n^3+11n^2+6n va A chia het cho 24 (1)
+) voi n = 1 => A = 24 chia het cho 24. vay (1) dung voi n = 1.(*)
+) gia su (1) dung voi n = k tuc la A(k) = k^4+6k^3+11k^2+6k chia het cho 24
+) gio ta phai chung minh (1) cung dung voi n = (k+1). that vay ta co:
A(k+1) = (k+1)^4+6(k+1)^3+11(k+1)^2+6(k+1) = (k+1)[(k+1)^3+6(k+1)^2+11(k+1)+6] =
= (k+1)(k+2)[(k+1)^2+5(k+1)+6] = (k+1)(k+2)(k+3)(k+4)
nhận thấy A(k+1) là tích của số tự nhiên liên tiếp=> A(k+1) chia hết cho 24
=> A(n) = n^4+6n^3+11n^2+6n chia het cho 24 voi moi n thuoc N(*).
\(n^4+6n^3+11n^2+6n\)
= \(n^4+n^3+5n^3+5n^2+6n^2+6n\)
= \(n^3\left(n+1\right)+5n^2\left(n+1\right)+6n\left(n+1\right)\)
= \(\left(n+1\right)\left(n^3+5n^2+6n\right)\)
= \(\left(n+1\right)\left(n^3+2n^2+3n^2+6n\right)\)
= \(\left(n+1\right)\left[n^2\left(n+2\right)+3n\left(n+2\right)\right]\)
= \(\left(n+1\right)\left(n+2\right)\left(n^2+3n\right)\)
= \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Vì n là số tự nhiên nên n , n+1 , n+2 , n+3 là 4 số tự nhiên liên tiếp.
Trong 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp, một số sẽ chia hết cho 4, số còn lại tất nhiên chia hết cho 2, do đó tích 4 số tự nhiên liên tiếp sẽ chia hết cho 8. (1)
Trong 4 số tự nhiên liên tiếp chắc chắn có 1 số chia hết cho 3, do đó tích của 4 số tự nhiên liên tiếp sẽ chia hết cho 3. (2)
Từ (1) và (2) suy ra tích của 4 số tự nhiên liên tiếp sẽ chia hết cho 3 và 8.
Mà 3 và 8 là 2 số nguyên tố cùng nhau nên tích của 4 số tự nhiên liên tiếp chia hết cho 24 ( = 8.3 )
Vậy \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮24\)
Hay \(n^4+6n^3+11n^2+6n⋮24\left(n\in N\right)\)