Những câu hỏi liên quan
PB
Xem chi tiết
CT
4 tháng 10 2018 lúc 7:49
Bình luận (0)
LL
Xem chi tiết
DP
6 tháng 2 2022 lúc 17:21

Chứng minh với mọi số nguyên dương n thì

3^n + 2 – 2^n + 2 + 3^n – 2^n chia hết cho 10

                                      Giải

3^n + 2 – 2^n + 2 + 3^n – 2^n

= 3^n+2 + 3^n – 2^n + 2 -  2^n

= 3^n+2 + 3^n – ( 2^n + 2 + 2^n )

= 3^n . 3^2 + 3^n – ( 2^n . 2^2 + 2^n )

= 3^n . ( 3^2 + 1 ) – 2^n . ( 2^2 + 1 )

= 3^n . 10 – 2^n . 5

= 3^n.10 – 2^n -1.10

= 10.( 3^n – 2^n-1)

Vậy 3^n+2 – 2^n +2 + 3^n – 2^n chia hết cho 10

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
25 tháng 9 2017 lúc 9:11

Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3

=> ĐPCM;

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 10 2019 lúc 5:41

A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6

Bình luận (0)
CL
Xem chi tiết
LH
19 tháng 7 2018 lúc 16:07

bạn ơi bạn chỉ cần biến đổi làm sao cho nguyên vế đó trở thành dạng 5 x ( ...)  hoặc là bạn nói nó là bội của 5 thì bạn sẽ kết luận được nó chia hết cho 5 nhé , còn chia hết cho 2 cũng vậy đấy !

bạn hãy nhân đa thức với đa thức nhé !

Mình hướng dẫn bạn rồi đấy ! ok!

k nha !

Bình luận (0)
CL
19 tháng 7 2018 lúc 16:05

Ai đó làm ơn giúp tớ đi, rất gấp đó !!!!!!!

Bình luận (0)
AC
Xem chi tiết
DC
13 tháng 6 2018 lúc 21:41

Trả lời ngắn tí như ri này:

Ta có:\(3.25^n.5\) =\(15.25^n\) \(\equiv15.8^n\left(mod17\right)\) .

\(2^{3n+1}=8^n.2\left(mod17\right)\) .

\(\Rightarrow3.5^{2n+1}+2^{3n+1}\equiv15.8^n+2.8^n\left(mod17\right)\) .

\(=17.8^n\) chia hết cho 17 \(\forall\) so nguyên n.

Bình luận (0)
DH
13 tháng 6 2018 lúc 15:33

\(3\cdot5^{2n+1}+2^{3n+1}=3\cdot5^{2n}\cdot5+2^{3n}\cdot2=15\cdot25^n+8^n\cdot2\)

\(=\left(17-2\right)\cdot25^n+8^n\cdot2=17\cdot25^n-2\cdot25^n+8^n\cdot2=17\cdot25^n-2\left(25^n-8^n\right)\)

\(=17\cdot25^n-2\left(25-8\right)\left(25^{n-1}+25^{n-2}\cdot8+25^{n-3}\cdot8^2+...+8^{n-1}\right)\)

\(=17\cdot25^n-34\left(25^{n-1}+25^{n-2}\cdot8+25^{n-3}\cdot8^2+...+8^{n-1}\right)\)

vì 17 chia hết cho 17 nên 17*25^n chia hết cho 17(1)

vì 34 chia hts cho 17 nên 34(25^n-1+25^n-2*8+25^n-3*8^2+...+8^n-1) chia hết cho 17

\(\Rightarrow17\cdot25^n-34\left(25^{n-1}+25^{n-2}\cdot8+25^{n-3}\cdot8^2+...+8^{n-1}\right)\)chia hết cho 17

\(\Rightarrow3\cdot5^{2n+1}+2^{3n+1}\)chia hết cho 17 (đpcm)

Bình luận (0)
BV
Xem chi tiết
NT
6 tháng 11 2021 lúc 21:49

\(\Leftrightarrow\left(3n+7-2n-3\right)\left(3n+7+2n+3\right)\)

\(=\left(5n+10\right)\left(n+4\right)⋮5\)

Bình luận (0)
TT
Xem chi tiết
TC
20 tháng 8 2017 lúc 8:56

Ta có:\(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)=6n^2+31n+5-\left(6n^2+7n-5\right)\)

                                                                                           \(=38n+10\)

                                                                                              \(2\left(19n+5\right)⋮2\left(đpcm\right)\)

Bình luận (0)
HQ
Xem chi tiết
NT
2 tháng 9 2023 lúc 16:35

Ta có:

\(2n^3+3n^2+n=n\left(2n^2+3n+1\right)\)

\(=n\left(2n^2+2n+n+1\right)\)

\(=n\left[2n\left(n+1\right)+\left(n+1\right)\right]\)

\(=n\left(n+1\right)\left(2n+1\right)\)

\(=n\left(n+1\right)\left(2n-2+3\right)\)

\(=2\left(n-1\right)n\left(n+1\right)+3n\left(n+1\right)\)

Ta có \(n-1\) ; \(n\) và \(n+1\) là \(3\) số nguyên liên tiếp

\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮2\) và \(3\)

Do đó \(\left(n-1\right)n\left(n+1\right)⋮2.3=6\)

\(\Leftrightarrow2\left(n-1\right)n\left(n+1\right)⋮6\left(1\right)\)

Ta lại có: \(n\) và \(n+1\) là 2 số nguyên liên tiếp \(\Rightarrow n\left(n+1\right)⋮2\)

Do đó: \(3n\left(n+1\right)⋮3\)

\(\Leftrightarrow3n\left(n+1\right)⋮2.3=6\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(2n^3+3n^2+n⋮6\)

Bình luận (0)
NT
2 tháng 9 2023 lúc 16:46

\(2n^3-3n^2+n\left(\forall n\inℤ\right)\)

\(=n\left(2n^2-3n+1\right)\)

\(=n\left(2n^2-2n-n+1\right)\)

\(=n\left[2n\left(n-1\right)-\left(n-1\right)\right]\)

\(=n\left(n-1\right)\left(2n-1\right)\)

\(=n\left(n-1\right)\left(2n+2-3\right)\)

\(=n\left(n-1\right)\left(2n+2\right)-3n\left(n-1\right)\)

\(=2n\left(n-1\right)\left(n+1\right)-3n\left(n-1\right)\) 

Ta có :

\(n\left(n-1\right)\left(n+1\right)⋮3\) (tích 3 số liên tiếp)

\(\Rightarrow2n\left(n-1\right)\left(n+1\right)⋮6\left(\forall n\inℤ\right)\left(1\right)\)

Ta lại có :

\(n\left(n-1\right)⋮2\) (tích 2 số liên tiếp là số chẵn)

\(\Rightarrow3n\left(n-1\right)⋮6\left(\forall n\inℤ\right)\left(2\right)\)

\(\left(1\right);\left(2\right)\Rightarrow2n\left(n-1\right)\left(n+1\right)-3n\left(n-1\right)⋮6\left(\forall n\inℤ\right)\)

\(\Rightarrow2n^3-3n^2+n⋮6\left(\forall n\inℤ\right)\)

Bình luận (0)
MP
2 tháng 9 2023 lúc 16:47

Ta có:

\(2n^3-3n^2+n\\ =2n^3-2n^2-n^2-n\\ =2n^2\left(n-1\right)-n\left(n-1\right)\\ =\left(n-1\right)\left(2n^2-n\right)\\ =\left(n-1\right)n\left(2n-1\right)\\ =\left(n-1\right)n\left(2n+2\right)-3\left(n-1\right)n\\ =2\left(n-1\right)n\left(n+1\right)-3\left(n-1\right)n\)

Vì \(n-1;n;n+1\) là ba số nguyên liên tiếp nên có ít nhất một số chia hết cho \(3\) và một số chia hết cho \(2\)

\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮6\\ \Rightarrow2\left(n-1\right)n\left(n+1\right)⋮6\left(1\right)\)

Lại có \(n-1;n\) là hai số nguyên liên tiếp nên sẽ có một số chia hết cho \(2\)

\(\Rightarrow\left(n-1\right)n⋮2\\ \Rightarrow3\left(n-1\right)n⋮6\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) ta được:\(2\left(n-1\right)n\left(n+1\right)-3\left(n-1\right)n⋮6\)

Hay \(2n^3-3n^2+n⋮6\)

 

Bình luận (0)
PH
Xem chi tiết
DH
4 tháng 4 2015 lúc 19:26

Ta có 2n3 + 3n2 + n = n(n + 1)(2n + 1)

Vì n và n + 1 là 2 số nguyên liên tiếp nên n(n + 1) chia hết cho 2 nên n(n + 1)(2n + 1) chia hết cho 2 (1)

Vậy để 2n3 + 3n2 + n = n(n + 1)(2n + 1) chia hết cho 6 ta cần chứng minh n(n + 1)(2n + 1) chia hết cho 3

Thật vậy

Ta có TH1: n = 3k + 1 (k thuộc Z)

=> (3k + 1)(3k + 2)(6k + 3) chia hết cho 3

         TH2: n = 3k + 2 (k thuộc Z)

=> (3k + 2)(3k + 3)(6k + 5) chia hết cho 3

=> n(n + 1)(2n + 1) chia hết cho 3 (2)

Từ (1) và (2) suy ra 2n3 + 3n2 + n = n(n + 1)(2n + 1) chia hết 2.3 = 6 với mọi số nguyên n

Bình luận (0)
LD
2 tháng 1 2017 lúc 16:49

bạn àm theo cách đòng dư thức á. Nếu bạn không biết làm thì nhắn xuống dưới mình giải dùm

Bình luận (0)