Cho \(A=\dfrac{1}{2\left(n-1\right)^2+3}\)
Tìm n thuộc Z để A đạt giá trị lớn nhất
tìm x thuộc Z để A= 14-x/4-x đạt giá trị lớn nhất
\(A=\frac{14-x}{4-x}=\frac{4-x+10}{4-x}=1+\frac{10}{4-x}\)
Để \(A\)có GTLN \(\Leftrightarrow\)4-x có GTNN, \(4-x>0\)và \(x\inℤ\)
\(\Rightarrow4-x=1\Rightarrow x=3\)
Vậy, A có GTLN là 11 khi x=3
Có \(A=\frac{14-x}{4-x}=\frac{4-x+10}{4-x}=1+\frac{10}{4-x}\)
Nếu A có GTLN \(\Rightarrow\)4-x có GTNN \(\Rightarrow\)4 - x > 0 ( x \(\inℤ\))
\(\Rightarrow\)4 - x = 1
\(\Leftrightarrow\)x = 3
Vậy A có GTLN là 11 nếu x = 3
Đặt \(A=\frac{x-13}{x+13}=\frac{x+13-26}{x+13}=1+\frac{-26}{x+13}\)
Để A có GTLN \(\Leftrightarrow\frac{-26}{x+13}\)có GTNN (vì nó là số âm nghe bạn)
\(\Leftrightarrow x+13\)có GTLN,\(x+13< 0\)và \(x\in Z\)
\(\Leftrightarrow x+13=-1\)
\(\Leftrightarrow x=-14\)
Vậy, A có GTLN là 27 khi x=-14
Cho biểu thức P = 2n+1 / n+1
a) Tìm n để P thuộc Z
b) Tìm giá trị lớn nhất, giá trị nhỏ nhất của P
P= \(\frac{2n+1}{n+1}\)= \(\frac{2n+2-1}{n+1}\) = \(\frac{2n+2}{n+1}\) - \(\frac{1}{n-1}\) = 2- \(\frac{1}{n-1}\)
a) Vì 2 thuộc Z nên để P thuộc Z thì \(\frac{1}{n-1}\) phải thuộc Z
=> 1 chia hết cho n-1 => n-1 thuộc Ư(1)={1;-1}
TH1:n-1=1 => n=2
TH2:n-1=-1 => n=0. Vậy n thuộc {2;0}
b) Vì 2 thuộc Z nên để P có GTLN thì -\(\frac{1}{n-1}\) có GTLN => \(\frac{1}{n-1}\) có GTNNTa có: 1 thuộc Z và \(\frac{1}{n-1}\) có GTNN => n-1 là số nguyên âm lớn nhất => n-1=-1 => n=0
Khi đó, P= \(\frac{2.0+1}{0+1}\) = \(\frac{1}{1}\)= 1
Vì 2 thuộc Z nên để P có GTNN thì - \(\frac{1}{n-1}\) có GTNN => \(\frac{1}{n-1}\) có GTLN=> n-1 là số nguyên dương nhỏ nhất => n-1=1 => n=2
Khi đó, P= \(\frac{2.2+1}{2+1}\)= \(\frac{5}{3}\)
P thuộc Z khi: 2n+1 chia hết cho n+1
<=> 2n+2-1 chia hết cho n+1<=> 2(n+1)-1 chia hết cho n+1
<=> 1 chia hết cho n+1 (vì: 2(n+1) chia hết cho n+1)
<=> n+1 E {-1;1} <=> n E {-2;0}. Vậy: n E {-2;0} P/S: E là thuộc nha!
b)\(P=\frac{2n+1}{n+1}=\frac{2n+2-1}{n+1}=2-\frac{1}{n+1}\)
+)P lớn nhất khi n+1 là số nguyên âm lớn nhất => n+1=-1=>n=-2
Thay vào ta được:
\(P_{max}=2-\frac{1}{-1}=2-\left(-1\right)=3\)
+)P nhỏ nhất khi n+1 là số nguyên dương bé nhất=>n+1=1=>n=0
Thay vào ta được:
\(P_{min}=2-\frac{1}{1}=2-1=1\)
tìm x thuộc Z để biểu thức A=x-13/x+13 đạt giá trị lớn nhất
Cho dãy số tự nhiê 1; 2; ...; 50
a) Tìm 2 số thuộc dãy sao cho ước chung lớn nhất của chúng đạt giá trị lớn nhất
b) Tìm 2 số thuộc dãy sao cho bội chung nhỏ nhất đạt giá trị thuộc dãy
MAI LÀ PHẢI NẠP BÀI RÙI GIẢI GIÙM CÁI ĐI CÁC BẠN, AI GIẢI ĐC TICK CHO
cho biểu thức
A=\(\frac{5x+2}{x-3}\)
a) tìm x thuộc z để A có GIÁ TRỊ LỚN NHẤT
bài 2
bho biểu thức
B=\(\frac{-5x+2}{x-3}\)
a) tìm x thuộc z để b thuộc N
b) tìm x thuộc z để A có GIÁ TRỊ LỚN NHẤT
c) tìm x thuộc z để A có GIÁ TRỊ NHỎ NHẤT
Tìm y để G=\(\frac{2}{\left(3y+7\right)^2+5}\)đạt giá trị lớn nhất. Tìm giá trị ấy.
Ta có: \(\left(3y+7\right)^2\ge0\Rightarrow\left(3y+7\right)^2+5\ge5\)
=>\(G=\frac{2}{\left(3y+7\right)^2+5}\le\frac{2}{5}\)
Dấu "=" xảy ra khi: 3y+7=0 =>y=-7/3
Vậy GTLN của G là 2/5 tại y=-7/3
:))
CHO B= 10n/5n-3 (n thuộc z)
a, tìm n để B thuộc z
b,tìm giá trị lớn nhất của B
NHANH NHA
Cho p/s A=8.n/4.n-3
a) tìm n thuộc Z để A có giá trị nguyên
b) tìm n thuộc Z để A có giá trị nhỏ nhất
\(a)\) Ta có :
\(A=\frac{8n}{4n-3}=\frac{8n-6+6}{4n-3}=\frac{8n-6}{4n-3}+\frac{6}{4n-3}=\frac{2\left(4n-3\right)}{4n-3}+\frac{6}{4n-3}=2+\frac{6}{4n-3}\)
Để A có giá trị nguyên thì \(\frac{6}{4n-3}\) phải có giá trịn nguyên hay \(6⋮\left(4n-3\right)\)\(\Rightarrow\)\(\left(4n-3\right)\inƯ\left(6\right)\)
Mà \(Ư\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
Suy ra :
\(4n-3\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(3\) | \(-3\) | \(6\) | \(-6\) |
\(n\) | \(1\) | \(\frac{1}{2}\) | \(\frac{5}{4}\) | \(\frac{1}{4}\) | \(\frac{3}{2}\) | \(0\) | \(\frac{9}{4}\) | \(\frac{-3}{4}\) |
Vì \(n\inℤ\) nên \(n\left\{0;1\right\}\)
Vậy \(n\in\left\{0;1\right\}\) thì A có giá trị nguyên
Chúc bạn học tốt ~
\(b)\) Ta có :
\(A=\frac{8n}{4n-3}=2+\frac{6}{4n-3}\) ( câu a mình có phân tích rùi )
Để A đạt GTNN thì \(\frac{6}{4n-3}\) phải đạt GTNN hay \(4n-3< 0\) và đạt GTLN
\(\Rightarrow\)\(4n-3=-1\)
\(\Leftrightarrow\)\(4n=2\)
\(\Leftrightarrow\)\(n=\frac{1}{2}\) ( loại vì n là số nguyên )
\(\Rightarrow\)\(4n-3=-2\)
\(\Leftrightarrow\)\(4n=1\)
\(\Leftrightarrow\)\(\frac{1}{4}\)
\(\Rightarrow\)\(4n-3=-3\)
\(\Leftrightarrow\)\(4n=0\)
\(\Leftrightarrow\)\(n=0\)
Suy ra :
\(A=\frac{8n}{4n-3}=\frac{8.0}{4.0-3}=\frac{0}{0-3}=0\)
Vậy \(A_{min}=0\) khi \(n=0\)
Chúc bạn học tốt ~
Bài 12 : Tìm x ; y ; z thuộc số nguyên , biết :
a) A = 1000 - |x + 5| đạt giá trị lớn nhất ?
b) B = |y - 3| + 50 đạt giá trị nhỏ nhất ?
c) C = |x + 5| + |y - 5| + 2016 đạt giá trị nhỏ nhất ?
d) D = |x + 5| + |y - 5| + 2016 đạt giá trị nhỏ nhất ?
e) E = -|x + 1| - |y - 5| - |z - 1| + 2016 đạt giá trị nhỏ nhất