chứng minh phân số 12.n+1 phần 30.n+2 là phân số tối giản
(1) p phần q là phân số tối giản. chứng minh rằng p+q phần q cũng là phân số tối giản.
(2) tìm phân số tối giản biết tử là 75 và mẫu là BCNN (300; 400; 525)
(3) chứng minh hai phân số sau là tối giản:
+ n phần n+1
+ n+1 phần 2xn+3
Tìm số n thuộc N để phân 5n+6 phần 8n+7 không tối giản.
Ai làm được bài nào nhắn liền em nhé ( Thanks)
Chứng minh rằng: 12*n/30*2 là phân số tối giản
chứng tỏ phân số 12.n + 1 / 30.n + 2 là phân số tối giản ( n thuộc N )
Gọi ƯCLN(12n + 1,30n + 2) là d
Ta có: 12n + 1 chia hết cho d => 5(12n + 1) chia hết cho d => 60n + 5 chia hết cho d
30n + 2 chia hết cho d => 2(30n + 2) chia hết cho d => 60n + 4 chia hết cho d
=> 60n + 5 - (60n + 4) chia hết cho d
=> 60n + 5 - 60n - 4 chia hết cho d
=> 1 chia hết cho d => d = 1
=> ƯCLN(12n + 1,30n + 2) = 1
Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản
chứng minh phân số 2n+1 phần 5n+2 là 1 phân số tối giản với n thuộc n
chứng minh rằng n+1 phần n+2 là phân số tối giản với mọi số nguyên n
Gọi d=ƯCLN(n+1;n+2)
=>n+1-n-2 chia hết cho d
=>-1 chia hết cho d
=>d=1
=>PSTG
Chứng minh phân số 12.n+1/30.n+2 là phân số tối giản
*"/" là "phần" mà do mình không biết cách viết ký hiệu nên các bạn hiểu giúp mình nha ^^
Nhanh, đúng nhất mình sẽ tick nha. Cảm ơn các bạn !
1)chứng tỏ phân số sau là phân số tối giản
\(12.n+1/30.n+2 \)
2)chứng tỏ phn số sau là phân số tối giản
\(3.n+2/3.n+2\)
Chứng tỏ phân số n+1/3n+2 là phân số tối giản với mọi nguyên n
Chứng tỏ a/b tối giản thì a/a+b tối giản.
chứng minh các phân số sau là phân số tối giản :
2n+1/4n+3
4n+1/12n+7
Bạn nào giỏi giúp mik nha, các bạn chỉ cần làm từng phần ra rồi bấm gửi thôi, bạn nào làm đầy đủ 3 phần sớm nhất mình sẽ cho 10 pics anime+ 1 dấu tik =)
Đặt \(d=\left(n+1,3n+2\right)\).
Suy ra \(\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow3\left(n+1\right)-\left(3n+2\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Đặt \(d=\left(2n+1,4n+3\right)\).
Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Đặt \(d=\left(4n+1,12n+7\right)\).
Suy ra \(\hept{\begin{cases}4n+1⋮d\\12n+7⋮d\end{cases}}\Rightarrow\left(12n+7\right)-3\left(4n+1\right)=4⋮d\Rightarrow4n⋮d\Rightarrow1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
chứng minh phân số sau là phân số tối giản: \(\dfrac{2.n^2+n+1}{n}\)
1Đặt UCLN(\(2n^2\) + n + 1;n) = d
=> \(2n^2\) + n + 1 ⋮ d ; n ⋮ d
=> (2n + 1) n ⋮ d
<=>\(2n^2\) + n ⋮ d
<=>(2n2 + n + 1) - (2n2 + n) ⋮ d
<=> 1⋮d
=> d ϵƯ(1)=1
=>UCLN(\(2n^2\) + n + 1;n) =1
=>dpcm
hum biết nhe
khó qué
tui mới L4
HIHI