Chứng tỏ rằng:
a, (2+2^3+ 2^3+...+2^100)chia hết cho 31
b,(1+3+3^2+3^3+...+3^11)chia hết cho 40
a, Cho C = \(3+3^2+3^3+...+3^{100}\) chứng tỏ C chia hết cho 40.
b, Chứng minh rằng: C = \(2+2^2+2+3+...+2^{99}+2^{100}\) chia hết cho 31.
lg
a)C=3+3^2+3^3+...+3^100
=(3+3^2+3^3+3^4)+...+(3^96+3^97+3^98+3^99+3^100)
=(3.1+3.3+3.3^2+3.3^3)+...+(3^96.1+3^96.3+3^96.3^2+3^96.3^3)
=3.(1+3+3^2+3^3)+...+3^96.(1+3+3^2+3^3)
=3.40+...+3^96.40
=40.(3+...+3^96) chia hết cho 40
=>C chia hết cho 40
Vậy C chia hết cho 40
phần b làm tương tự
a, sai đề
b,Ta có :
C=2+2^2+2^3+2^4+2^5...+2^96+2^97+2^98+2^99+2^100
= (2+2^2+2^3+2^4+2^5)+...+(2^96+2^97+2^98+2^99+2^100)
= (2.1+2.2+2.2^2+2.2^3+2.2^4)+...+(2^96.1+2^96.2+2^96.2^2+2^96.2^3+2^96.2^4)
=2. (1+2+2^2+2^3+2^4) +...+2^96.(1+2+2^2+2^3+2^4)
=2.31+...+2^96.31
=31. (2+...+2^96) chia hết cho 31
=>C chia hết cho 31
A = 119 + 118 +.....+11 + 1 chứng tỏ rằng A chia hết cho 5
B=2 + 22 + 23+ .......+ 220 chứng tỏ rằng B chia hết cho 5
C = 1+ 3+ 32 + ......+ 311 chứng tỏ rằng C chia hết cho 40
chứng minh
A = 1+3+3^2+3^3+...3^11 chứng tỏ rằng chia hết cho 13
B = 3+4+2^2+2^3+....+2^30 chứng tỏ rằng chia hết cho 11
C = 3^1000-1 chứng tỏ rằng chia hết cho 4
TA CÓ:
A=30+3+32+33+........+311
(30+3+32+33)+....+(38+39+310+311)
3(0+1+3+32)+......+38(0+1+3+32)
3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)
A = 119 + 118 +.....+11 + 1 chứng tỏ rằng A chia hết cho 5
B=2 + 22 + 23+ .......+ 220 chứng tỏ rằng B chia hết cho 5
C = 1+ 3+ 32 + ......+ 311 chứng tỏ rằng C chia hết cho 13 và 40
A = 119 + 118 +.....+11 + 1 chứng tỏ rằng A chia hết cho 5
B=2 + 22 + 23+ .......+ 220 chứng tỏ rằng B chia hết cho 5
C = 1+ 3+ 32 + ......+ 311 chứng tỏ rằng C chia hết cho 13 và 40
ta đảo ngược A lại ta có 1+112+113+...+119
2A=112+113+114+....+119+1110
lấy 2A-A còn 1110 có tận cùng băng 0 nên chia hết 5
A = 119 + 118 +.....+11 + 1 chứng tỏ rằng A chia hết cho 5
B=2 + 22 + 23+ .......+ 220 chứng tỏ rằng B chia hết cho 5
C = 1+ 3+ 32 + ......+ 311 chứng tỏ rằng C chia hết cho 13 và 40
A =2+22+23+...+210.Chứng tỏ A chia hết cho 3, cho 31.
B=1+3+32+...+311. Chứng tỏ B chia hết cho 13, cho 40.
.LÀM GIÚP MÌNH NHA MÌNH ĐANG CẦN GẤP !!!
a)A=(2+22)+(23+24)+...(29+210)
A=2(2+1)+23(1+2)+....+29(2+1)
A=3(2+23+25+27+29)
Vay A chia het cho 3(khi chia 3 duoc 2+23+25+27+29du 0)
b)A=(2+22+23+24+25)+(26+27+28+29+210)
A=2(1+2+22+23+24)+26(1+2+22+23+24)
A=31(2+26) luon chia het cho 31 :))
A=2+2^2+2^3+...+2^10
*ta có :A=(2+2^2)+(2^3+2^4)+...+(2^9+2^10)
=2(1+2)+2^3(1+2)+...+2^9(1+2)
=2.3+2^3.3+...+2^9.3
=3.(2+2^3+...+2^9) chia hết cho 3
*ta có:..........................................................(tương tự câu trên,nhóm 5 số vào 1 nhóm)
a) Chứng tỏ rằng 3^0 + 3^1 + 3^2 + 3^3 +.....+3^11 chia hết cho 40
b) Tìm n thuộc N* biết 2016n^2 + 2016n+2 chia hết cho n+1
Cho C= 1+3+3^2+3^3+....+3^11 chứng tỏ rằng
a) C chia hết cho 13
b) C chia hết cho 40