Ôn tập toán 6

NM

Chứng tỏ rằng:

a, (2+2^3+ 2^3+...+2^100)chia hết cho 31

b,(1+3+3^2+3^3+...+3^11)chia hết cho 40

EC
17 tháng 3 2017 lúc 19:11

chắc bạn chép sai đầu bài ý a rồi , mình sửa lại nhé

Đặt A=\(2+2^2+2^3+...+2^{100}\)

Tổng A có :(100-1):1+1=100(số hạng)

=>A=\(2+2^2+2^3+...+2^{100}\)

A=\(\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

(có \(\dfrac{100}{5}=20\) nhóm , mỗi nhóm có 5 số hạng)

A=\(2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

A=\(2.31+2^6.31+...+2^{96}.31\)

A=\(31.\left(2+2^6+...+2^{96}\right)⋮31\)(đpcm)

Bình luận (0)
PT
18 tháng 3 2017 lúc 10:28

Sửa đề câu a tí nhé:

Chứng tỏ \(\left(2+2^2+2^3+...+2^{100}\right)\)chia hết cho 31

Giải:

Đặt \(S=\left(2+2^2+2^3+...+2^{100}\right)\)

\(=2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)+...+\left(1+2+2^2+2^3+2^4\right).2^{96}\)

\(=2.31+2^6.31+...+2^{96}.31\)

\(=31.\left(2+2^6+...+2^{96}\right)\)

\(\Rightarrow S⋮31\)

Bình luận (0)
PT
18 tháng 3 2017 lúc 10:32

b.

Đặt \(A=\left(1+3+3^2+3^3+...+3^{11}\right)\)

\(A=\left(1+3+3^2+3^3+...+3^8.\left(1+3+3^2+3^3\right)\right)\)

\(A=40+...+3^8.40\)

\(A=40.\left(1+...+3^8\right)⋮40\)

Vậy \(A\) chia hết cho \(40\)

Bình luận (0)

Các câu hỏi tương tự
YN
Xem chi tiết
YN
Xem chi tiết
YN
Xem chi tiết
YN
Xem chi tiết
DA
Xem chi tiết
HA
Xem chi tiết
NA
Xem chi tiết
LD
Xem chi tiết
YN
Xem chi tiết