Những câu hỏi liên quan
PT
Xem chi tiết
AN
27 tháng 8 2016 lúc 11:57

Ta có (x + |x| + 2016)(y + |y| + 2016) > 2016 với mọi x, y nên không thể tính được P

Bình luận (0)
ND
20 tháng 9 2016 lúc 18:32

x+y =0

=> P = 1

Bình luận (0)
H24
20 tháng 9 2016 lúc 19:40

x+y=0

=>P=1

Bình luận (0)
TQ
Xem chi tiết
NH
Xem chi tiết
NU
6 tháng 2 2020 lúc 7:58

(3x - 1)^2016 + (5y - 3)^2016 < 0    (1)

có (3x - 1)^2016 > 0 

     (5y - 3)^2018 > 0

=> (3x-1)^2016  + (5y - 3)^2018 > 0    và (1)

=> (3x - 1)^2016 + (5y - 3)^2016 = 0

=> 3x - 1 = 0 và 5y - 3 = 0

=> x = 1/23 và y = 3/5

Bình luận (0)
 Khách vãng lai đã xóa
YN
6 tháng 2 2020 lúc 9:26

Thông cảm máy chụp đểu

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
DH
12 tháng 11 2017 lúc 13:01

\(5x^2+5y^2+8xy-2x+2y+2=0\)

\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

Ta thấy \(VT\ge VP\forall x;y\) để đấu "=" xảy ra \(\Leftrightarrow x=1;y=-1\) thay vào M :

\(M=\left(-1+1\right)^{2015}+\left(1-2\right)^{2016}+\left(-1+1\right)^{2017}=1\)

Bình luận (0)
NT
Xem chi tiết
HN
10 tháng 9 2016 lúc 22:00

Đặt \(t=\left|x-1\right|,t\ge0\)

Suy ra pt trở thành : \(t^2+t-2016=0\)

Xét \(\Delta=1^2-4.\left(-2016\right)=8065\)

\(\Rightarrow\begin{cases}t_1=\frac{-1-\sqrt{8065}}{2}\left(\text{loại}\right)\\t_2=\frac{-1+\sqrt{8065}}{2}\left(\text{nhận}\right)\end{cases}\)

Ta có \(\left|x-1\right|=\frac{-1+\sqrt{8065}}{2}\)

+ Nếu \(x\ge1\) thì \(x-1=\frac{-1+\sqrt{8065}}{2}\Rightarrow x=\frac{1+\sqrt{8065}}{2}\)(tm)

+ Nếu x < 1 thì \(1-x=\frac{-1+\sqrt{8065}}{2}\Rightarrow x=\frac{3-\sqrt{8065}}{2}\) (tm)

Bình luận (1)
NH
Xem chi tiết
TM
22 tháng 1 2017 lúc 21:27

Vì \(\hept{\begin{cases}\left|x-2\right|\ge0\\\sqrt{\left(y+1\right)^{2015}}\ge0\end{cases}\Rightarrow\left|x-2\right|+\sqrt{\left(y+1\right)^{2015}}\ge}0\)

Dấu "=" của đẳng thức xảy ra khi \(\left|x-2\right|=\sqrt{\left(y+1\right)^{2015}}=0\)

\(\left|x-2\right|=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

\(\sqrt{\left(y+1\right)^{2015}}=0\Leftrightarrow\left(y+1\right)^{2015}=0\Leftrightarrow y+1=0\Leftrightarrow y=-1\)

Thay x=2 và y=-1 vào biểu thức P ta có:

\(P=2x^3+15y^3+2016=2.2^3+15.\left(-1\right)^3+2016=16+\left(-15\right)+2016=2017\)

Vậy ................

Bình luận (0)
H24
22 tháng 1 2017 lúc 20:48

\(P=2.2^3-15+2016=2017\)

Bình luận (0)
LQ
Xem chi tiết
NS
Xem chi tiết
NT
4 tháng 1 2021 lúc 21:51

Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)

\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\left(y-1\right)^2\ge0\forall y\)

\(2\left(x+y\right)^2\ge0\forall x,y\)

Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)

Dấu '=' xảy ra khi 

\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)

Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được: 

\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)

\(=0^{2016}+1^{2017}+0^{2018}=1\)

Vậy: M=1

Bình luận (0)
PA
Xem chi tiết
NV
Xem chi tiết
HN
28 tháng 10 2016 lúc 11:15

Từ giả thiết ta có ngay \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

Suy ra x + y = 0 hoặc y + z = 0 hoặc z + x = 0

Tới đây bạn tự làm nhé :)

Bình luận (0)