So sánh các lũy thừa sau:
\(\left(-32\right)^9\) và \(\left(-18\right)^{13}\)
\(\left(-32\right)^9\)và \(\left(-18\right)^{13}\)
Hãy so sánh 2 lũy thừa trên
thấy (-32)^9 và (-18)^13 là 2 số âm
trước tiên ta so sánh: 32^9 và 18^13
32^9 = (2^5)^9 = 2^45 = 2^13.2^32
18^13 = 2^13.9^13 = 2^13.3^26
Có: 8 < 9 => 2^3 < 3^2 => (2^3)^5 < (3^2)^5 => 2^15 < 3^10 và 2 < 3^3
=> 2.2^15 < 3^3.3^10 => 2^16 < 3^13 => (2^16)^2 < (3^13)^2 => 2^32 < 3^26
=> 2^13.2^32 < 2^13.3^26 => 2^45 < 2^13.9^13 => 32^9 < 18^13
=> -32^9 > -18^13 => (-32)^9 > (-18)^13
So sánh các lũy thừa sau:
1/ \(75^{2005}-75^{2004}\)và\(75^{2004}-75^{2003}\)
2/ \(\left(-32\right)^9\)và \(\left(-18\right)^{13}\)
1)
752005-752004=752004.75-752004=752004(75-1)=752004.74
752004-752003=752003.75-752003=752003(75-1)=752003.74
ta thấy: 752004.74 > 752003.74
Vậy: 752005-752004 > 752004-752003
2)
(-32)9= [(-2)5 ]9 = (-2)5.9= (-2)45 (một số âm vì số mũ lẻ)
Ta thấy: 1813 > 1613 =[24 ]13 = 252 Nên (- 18)13< (-2)52 (1)
Mà (2)45 < 252 => (-2)45> (-2)52 (2)
Từ (1) và (2) suy ra (-2)45 > (- 18)13 hay (-32)9 > (- 18)13
So sánh các số sau:
d)\(\left(-32\right)^9\)và\(\left(-18\right)^{13}\)
e)\(\left[\frac{-25}{46}\right]\)và\(\left(\frac{-25}{46}\right)^{2005}\)
d, ta có :(-32)9=-(329) ;(-18)13=-(1813)
329=32\(\times\)328=32\(\times\)(322)4=32\(\times\)10244=32\(\times\)1024\(\times\)10243
1813=18\(\times\)1812=18\(\times\)(183)4=18\(\times\)58324=18\(\times\)5832\(\times\)58323
18\(\times\)5832 >16\(\times\)5832=32\(\times\)2916>32\(\times\)1024 =58323>10243
nên 1813>329
vậy (-18)13 <(-32)9
(-32)9=-(329)
(-18)13=-(1813)
329<369
ta có :369=(2\(\times\)18)9=29\(\times\)189
vì 184>164mà 164=(24)4=216
mà 216>29
\(\Rightarrow\)184>29
\(\Rightarrow\)184\(\times\)189>29\(\times\)189
\(\Rightarrow\)1813>369mà 369 >329
\(\Rightarrow\)1813>329
\(\Rightarrow\)(-18)13<(-32)9
So sánh các lũy thừa sau :
1) \(\left(-2\right)^{240}\)và \(\left(-3\right)^{160}\)
2) \(\left(-84\right)^{11}\)và \(\left(-9\right)^{21}\)
3)\(\left(\frac{-1}{8}\right)^7\)và \(\left(\frac{-1}{16}\right)^5\)
so sánh\(\left(-32\right)^9va\left(-18\right)^{13}\)
So sánh
a,\(\left(-\frac{1}{16}\right)^{100}\) và \(\left(-\frac{1}{2}\right)^{500}\)
b,\(\left(-32\right)^9\) và \(\left(-16\right)^{13}\)
c,\(\left(-32\right)^9\) và \(\left(-18\right)^{13}\)
Hiện tại mình đang cần gấp giúp mk nha!
\(\text{a) }\left(-\frac{1}{16}\right)^{100}=\frac{\left(-1\right)^{100}}{16^{100}}=\frac{1}{16^{100}}\)
\(\left(-\frac{1}{2}\right)^{500}=\frac{\left(-1\right)^{500}}{2^{500}}=\frac{1}{\left(2^5\right)^{100}}=\frac{1}{32^{100}}\)
Ta co
\(16^{100}< 32^{100}\)
\(\Rightarrow\frac{1}{16^{100}}>\frac{1}{32^{100}}\)
\(\Rightarrow\left(-\frac{1}{16}\right)^{100}>\left(-\frac{1}{2}\right)^{500}\)
a.
Ta có:
\(\left(-\frac{1}{16}\right)^{100}=\frac{\left(-1\right)^{100}}{16^{100}}=\frac{1}{16^{100}}\)
\(\left(-\frac{1}{2}\right)^{500}=\frac{\left(-1\right)^{500}}{2^{500}}=\frac{1}{\left(2^5\right)^{100}}=\frac{1}{32^{100}}\)
Vì \(\frac{1}{16^{100}}>\frac{1}{32^{100}}\Rightarrow\left(-\frac{1}{16}\right)^{100}>\left(-\frac{1}{2}\right)^{500}\)
b.
Ta có:
\(\left(-32\right)^9=\left[-\left(2^5\right)\right]^9=-\left(2^{45}\right)\)
\(\left(-16\right)^{13}=\left[-\left(2^4\right)\right]^{13}=-\left(2^{52}\right)\)
Vì \(-\left(2^{45}\right)>-\left(2^{52}\right)\Rightarrow\left(-32\right)^9>\left(-16\right)^{13}\)
#Chúc bạn học tốt!#
So sánh
\(\left(-32\right)^9và\left(-18\right)^{13}\)
329 = (25)9 = 245 < 252 = (24)13=1613<1813
=> (-32)9 > (-18)13
So sánh các lũy thừa sau
a, \(\left(\frac{1}{16}\right)^{10}va\left(\frac{1}{2}\right)^{50}\)
b, 9920 và 999910
a, Ta có :
\(\left(\frac{1}{2}\right)^{50}=\left(\left(\frac{1}{2}\right)^5\right)^{10}=\left(\frac{1}{32}\right)^{10}\)
bạn so sánh nha :)
b,
T/c : \(99^{20}=\left(\left(99\right)^2\right)^{10}=9801^{10}\)
tiếp đây thì bạn tự làm nha có gì k hiểu ibx mk
a) So sánh: \(\left(-\dfrac{1}{5}\right)^{300}\)và \(\left(-\dfrac{1}{3}\right)^{500}\)
b) Viết các số 227 và 318 dưới dạng lũy thừa có số mũ là 9
Mai mik nộp r giúp mk với. THANKS nhiều!!!!
a) \(=\left(\frac{-1}{5}^3\right)^{100}va\left(\frac{-1}{3}^5\right)^{100}\)
\(=\left(\frac{-1}{125}\right)^{100}va\left(\frac{-1}{243}\right)^{100}\)
Mà \(\frac{-1}{125}>\frac{-1}{243}\)
\(\Rightarrow\left(\frac{-1}{5}\right)^{300}>\left(\frac{-1}{3}\right)^{500}\)
b)\(2^{27}=8^9;3^{18}=9^9\)