Chứng minh rằng với mỗi số nguyên dương n thì:
\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}⋮6\)
Với mỗi số nguyên dương \(n\), đặt \(s_{n} = (2 - \sqrt{3})^n + (2 + \sqrt{3})^n\)
a) Chứng minh rằng: \(s_{n+2} = 4s_{n+1} - s_{n}\)
b) Chứng minh rằng sn là số nguyên với mọi số nguyên dương n và tìm số dư của s2018 khi chia cho 3.
c) Chứng minh rằng \([(2 + \sqrt{3})^n] = s_{n} - 1\) với mọi số nguyên dương \(n\), trong đó kí hiệu [x] là phần nguyên của số thực \(x\).
chứng minh rằng với mọi sô nguyên dương n thì 3^n+3=3^n+1+2^n+3+2^n+2 chia hết cho 6
thì sao? sao ko thấy câu hỏi?
chứng minh rằng với mọi số nguyên dương n thì: 3n+3+2n+3-3n+2+2n+2 chia hết cho 6
\(3^{n+3}+2^{n+3}-3^{n+2}+2^{n+2}=27.3^n-9.3^n+8.2^n+4.2^n\)
\(=3^n\left(27-9\right)+2^n\left(8+4\right)\)
\(=6.3^{n+1}+6.2^{n+1}\)
\(=6\left(3^{n+1}+2^{n+1}\right)⋮6\left(đpcm\right)\)
Chứng minh rằng nếu n là số nguyên dương thì \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)chia hết cho 6
MÌNH KO viết đề nha
=3nx33+3nx3+2nx22
=3n(33+3)+2nx22
=
chứng minh rằng nếu 1+2^n+3^n là số nguyên tố thì n= 3^k với k nguyên dương
Chứng minh rằng với mọi số nguyên dương n thì:
\(3^{n+2} - 2 ^{n+2} + 3 ^{n} - 2^{n}\) chia hết cho 10
3n+2 -2n+2 +3n -2n
=3n .32 -2n .22 +3n -22
=3n(9+)-2n(4-1)
Vì 3n .10 ⋮10
=> 3n .10- 2n .3⋮10
=>3n +2 -2n+2 +3n -2n ⋮10
Chứng minh rằng với mọi số nguyên dương n thì:
3n+ 3 + 2n+3 - 3n+2 + 2n+2 chia hết cho 6
chứng minh rằng với mọi số nguyên dương thì S=(n+1)(n+2)(n+3)..........(n+n) chia hết cho 2^n