Những câu hỏi liên quan
BT
Xem chi tiết
NQ
6 tháng 8 2021 lúc 9:21

Viết lại tỉ số ta có : \(\frac{x}{8}=\frac{y}{12}\text{ và }\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất của dãy tí số bằng nhau ta có :

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

Vậy\(\hept{\begin{cases}x=8\times2=16\\y=12\times2=24\\z=15\times2=30\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
PN
Xem chi tiết
NT
22 tháng 1 2024 lúc 13:02

1: \(\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z+7}{5}\)

mà x+y-z=8

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z+7}{5}=\dfrac{x-1+y-2-z-7}{3+4-5}=\dfrac{8-3-7}{2}=\dfrac{-2}{2}=-1\)

=>\(\left\{{}\begin{matrix}x-1=-1\cdot3=-3\\y-2=-1\cdot4=-4\\z+7=-1\cdot5=-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-2\\y=-2\\z=-12\end{matrix}\right.\)

2: \(\dfrac{x+1}{3}=\dfrac{y+2}{-4}=\dfrac{z-3}{5}\)

mà 3x+2y=47-42=5

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x+1}{3}=\dfrac{y+2}{-4}=\dfrac{z-3}{5}=\dfrac{3x+3+2y+4}{3\cdot3+2\left(-4\right)}=\dfrac{5+7}{9-8}=12\)

=>\(\left\{{}\begin{matrix}x+1=12\cdot3=36\\y+2=-12\cdot4=-48\\z-3=12\cdot5=60\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=35\\y=-48-2=-50\\z=60+3=63\end{matrix}\right.\)

Bình luận (0)
EB
Xem chi tiết
AH
30 tháng 7 2023 lúc 16:33

Lời giải:
Theo bài ra ta có:

$3x=2y; 4y=5z$
$\Rightarrow \frac{x}{2}=\frac{y}{3}; \frac{y}{5}=\frac{z}{4}$

$\Rightarrow \frac{x}{10}=\frac{y}{15}=\frac{z}{12}$

Đặt $\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=k$

$\Rightarrow x=10k; y=15k; z=12k$
Khi đó:

$3x^2-y^2+z^2=876$

$\Rightarrow 3(10k)^2-(15k)^2+(12k)^2=876$

$\Rightarrow 219k^2=876$

$\Rightarrow k^2=4$
$\Rightarrow k=\pm 2$

Nếu $k=2$ thì $x=10k=20; y=15k=30; z=12k=24$

Nếu $k=-2$ thì $x=10k=-20; y=15k=-30; z=12k=-24$

Bình luận (0)
PT
Xem chi tiết
NC
8 tháng 8 2021 lúc 9:59

undefined

Uchiha Itachi

Bình luận (0)
 Khách vãng lai đã xóa
AD
Xem chi tiết
TH
26 tháng 5 2021 lúc 19:22

\(\left\{{}\begin{matrix}2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)=\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\left(1\right)\\16x^5-20x^3+5\sqrt{xy}=\sqrt{\dfrac{y+1}{2}}\left(2\right)\end{matrix}\right.\).

ĐKXĐ: \(xy>0;y\ge-\dfrac{1}{2}\).

Nhận thấy nếu x < 0 thì y < 0. Suy ra VT của (1) âm, còn VP của (1) dương (vô lí)

Do đó x > 0 nên y > 0.

Với a, b > 0 ta có bất đẳng thức \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\).

Thật vậy, áp dụng bất đẳng thức Cauchy - Schwarz ta có:

\(\left(a+b\right)^4\le\left[2\left(a^2+b^2\right)\right]^2=4\left(a^2+b^2\right)^2\le8\left(a^4+b^4\right)\).

Dấu "=" xảy ra khi và chỉ khi a = b.

Áp dụng bất đẳng thức trên ta có:

\(\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^4\le8\left[8\left(x^4+y^4\right)+16x^2y^2\right]=64\left(x^2+y^2\right)^2\)

\(\Rightarrow\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\le8\left(x^2+y^2\right)\). (3)

Lại có \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2=4\left(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\right)\). (4) 

Áp dụng bất đẳng thức AM - GM ta có \(\dfrac{x^6}{y^4}+xy+xy+xy+xy\ge5x^2;\dfrac{y^6}{x^4}+xy+xy+xy+xy\ge5y^2;3\left(x^2+y^2\right)\ge6xy\).

Cộng vế với vế của các bđt trên lại rồi tút gọn ta được \(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\ge2\left(x^2+y^2\right)\). (5)

Từ (3), (4), (5) suy ra \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2\ge\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\Rightarrow2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)\ge\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\).

Do đó đẳng thức ở (1) xảy ra nên ta phải có x = y.

Thay x = y vào (2) ta được:

\(16x^5-20x^3+5x=\sqrt{\dfrac{x+1}{2}}\). (ĐK: \(x>0\))

PT này có một nghiệm là x = 1 mà sau đó không biết giải ntn :v

 

 

Bình luận (0)
TN
Xem chi tiết
DT
15 tháng 12 2021 lúc 20:32

5xY -3/6=2/3+2/4=7/6

5xY=7/6+3/6=5/3

Y = 5/3:5=1/3

Bình luận (0)
 Khách vãng lai đã xóa
DM
Xem chi tiết
HD
Xem chi tiết
LU
2 tháng 2 2017 lúc 15:52

Ta có: x/3=y/4=z/5....... 

2*x^2/2*3^2+2*y^2/2*4^2-3*z^2=-100/-25=4

x/3=4 suy ra x=12

y/4=4 ....y=16

z/5.......z=20

Bình luận (0)
TT
2 tháng 2 2017 lúc 15:57

Ta co : x:y:z=3:4:5

Hay : x/3=y/4=z/5 

=>2x^2/18=2y^2/32=3z^2/75 và 2x^2+2y^2-3z^2=-100

Áp dụng tính chất dãy tỉ số bằng nhau : 

2x^2/18=2y^2/32=3z^2/75=2x^2+2y^2-3z^2/18+32-75=-100/-25=4

Suy ra : 2x^2/18=4=>2x^2=72=>x^2=36=>x=+6

2y^2/32=4=>2y^2=128=>y^2=64=>y=+8

3z^2/75=4=>3z^2=300=>z^2=100=>z=+10

k nha , k hiu ns mk

Bình luận (0)
LU
2 tháng 2 2017 lúc 16:03

x=12

y=16

z=20

Bình luận (0)
PB
Xem chi tiết
PB
15 tháng 5 2020 lúc 21:06

giúp mình với các bạn!

Bình luận (0)
 Khách vãng lai đã xóa