A=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^6}\)tính giá trị cảu A
Tính giá trị của b.thức sau :
a) A= \(a.\dfrac{1}{3}+a.\dfrac{1}{4}-a.\dfrac{1}{6}\) với \(a=\dfrac{-3}{5}\)
b) \(B=b.\dfrac{5}{6}+b.\dfrac{3}{4}-b.\dfrac{1}{2}\) với \(b=\dfrac{12}{13}\)
a) `A=a. 1/3 + a. 1/4 - a.1/6 = a. (1/3+1/4 -1/6)=a. 5/12`
Thay `a=-3/5: A=-3/5 . 5/12 =-1/4`
b) `B=b. 5/6+ b. 3/4-b. 1/2=b.(5/6+3/4-1/2)=b. 13/12`
Thay `b=12/13: B=12/13 . 13/12=1`.
a) Ta có: \(A=a\cdot\dfrac{1}{3}+a\cdot\dfrac{1}{4}-a\cdot\dfrac{1}{6}\)
\(=a\left(\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{6}\right)\)
\(=a\cdot\left(\dfrac{4}{12}+\dfrac{3}{12}-\dfrac{2}{12}\right)\)
\(=a\cdot\dfrac{5}{12}\)
\(=\dfrac{-3}{5}\cdot\dfrac{5}{12}=\dfrac{-1}{4}\)
b) Ta có: \(B=b\cdot\dfrac{5}{6}+b\cdot\dfrac{3}{4}-b\cdot\dfrac{1}{2}\)
\(=b\left(\dfrac{5}{6}+\dfrac{3}{4}-\dfrac{1}{2}\right)\)
\(=b\cdot\left(\dfrac{10}{12}+\dfrac{9}{12}-\dfrac{4}{12}\right)\)
\(=b\cdot\dfrac{5}{4}\)
\(=\dfrac{12}{13}\cdot\dfrac{5}{4}=\dfrac{60}{52}=\dfrac{15}{13}\)
a) \(A=a\cdot\dfrac{1}{3}+a\cdot\dfrac{1}{4}-a\cdot\dfrac{1}{6}\\ A=a\cdot\left(\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{6}\right)\\ A=a\cdot\dfrac{-5}{12}\)
Khi \(a=\dfrac{-3}{5}\), ta có:
\(A=\dfrac{-3}{5}\cdot\dfrac{-5}{12}\\ A=\dfrac{1}{4}\)
Vậy khi \(a=\dfrac{-3}{5}\) thì \(A=\dfrac{1}{4}\)
b. \(B=b\cdot\dfrac{5}{6}+b\cdot\dfrac{3}{4}-b\cdot\dfrac{1}{2}\\ B=b\cdot\left(\dfrac{5}{6}+\dfrac{3}{4}-\dfrac{1}{2}\right)\\ B=b\cdot\dfrac{13}{12}\)
Khi \(a=\dfrac{12}{13}\), ta có:
\(B=\dfrac{12}{13}\cdot\dfrac{13}{12}\\ B=1\)
Vậy khi \(a=\dfrac{-3}{5}\) thì B = 1
Tính giá trị biểu thức A , biết rằng A = M : N
Mà M = \(\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+\dfrac{4}{96}+...+\dfrac{97}{3}+\dfrac{98}{2}+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
N = \(\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{90}{98}-\dfrac{91}{99}-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{495}+\dfrac{1}{500}}\)
Ta có: \(M=\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+\dfrac{4}{96}+...+\dfrac{97}{3}+\dfrac{98}{2}+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
\(=\dfrac{\left(1+\dfrac{1}{99}\right)+\left(1+\dfrac{2}{98}\right)+\left(1+\dfrac{3}{97}\right)+\left(1+\dfrac{4}{96}\right)+...+\left(1+\dfrac{98}{2}\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
\(=\dfrac{\dfrac{100}{99}+\dfrac{100}{98}+\dfrac{100}{97}+...+\dfrac{100}{1}+\dfrac{100}{2}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
=100
Ta có: \(N=\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{90}{98}-\dfrac{91}{99}-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{495}+\dfrac{1}{500}}\)
\(=\dfrac{\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+\left(1-\dfrac{3}{11}\right)+...+\left(1-\dfrac{90}{98}\right)+\left(1-\dfrac{91}{99}\right)+\left(1-\dfrac{92}{100}\right)}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)
\(=\dfrac{\dfrac{8}{9}+\dfrac{8}{10}+\dfrac{8}{11}+...+\dfrac{8}{99}+\dfrac{8}{100}}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)
\(=\dfrac{8}{\dfrac{1}{5}}=40\)
\(\Leftrightarrow\dfrac{M}{N}=\dfrac{100}{40}=\dfrac{5}{2}\)
Tính bằng cách hợp lí giá trị của biểu thức.
A = \(\left(3-\dfrac{1}{4} +\dfrac{3}{2}\right)\)- \(\left(5+\dfrac{1}{3}-\dfrac{5}{6}\right)\)-\(\left(6-\dfrac{7}{4}+\dfrac{3}{2}\right)\)
B =\(0,5+\dfrac{1}{3}+0,4+\dfrac{5}{7}+\dfrac{1}{6}-\dfrac{4}{35}+\dfrac{1}{41}\)
\(A=\left(3-\dfrac{1}{4}+\dfrac{3}{2}\right)-\left(5+\dfrac{1}{3}-\dfrac{5}{6}\right)-\left(6-\dfrac{7}{4}+\dfrac{2}{3}\right)\\ \Rightarrow A=3-\dfrac{1}{4}+\dfrac{3}{2}-5-\dfrac{1}{3}+\dfrac{5}{6}-6+\dfrac{7}{4}-\dfrac{2}{3}\\ \Rightarrow A=\left(3-5-6\right)-\left(\dfrac{1}{4}+\dfrac{7}{4}\right)+\left(\dfrac{3}{2}+\dfrac{5}{6}-\dfrac{2}{3}\right)\\ \Rightarrow A=-8-\dfrac{3}{2}+\dfrac{5}{3}\\ =-\dfrac{47}{6}.\\ B=0,5+\dfrac{1}{3}+0,4+\dfrac{5}{7}+\dfrac{1}{6}-\dfrac{4}{35}+\dfrac{1}{41}\)
\(\Rightarrow B=\left(0,5+0,4\right)+\left(\dfrac{1}{3}+\dfrac{1}{6}\right)+\left(\dfrac{5}{7}-\dfrac{4}{35}\right)+\dfrac{1}{41}\\ \Rightarrow B=\dfrac{9}{10}+\dfrac{1}{2}+\dfrac{3}{5}+\dfrac{1}{41}\\ \Rightarrow B=2+\dfrac{1}{41}\\ \Rightarrow B=\dfrac{83}{41}.\)
A=(3−
4
1
+
2
3
)−(5+
3
1
−
6
5
)−(6−
4
7
+
3
2
)
⇒A=3−
4
1
+
2
3
−5−
3
1
+
6
5
−6+
4
7
−
3
2
⇒A=(3−5−6)−(
4
1
+
4
7
)+(
2
3
+
6
5
−
3
2
)
⇒A=−8−
2
3
+
3
5
=−
6
47
.
B=0,5+
3
1
+0,4+
7
5
+
6
1
−
35
4
+
41
1
\Rightarrow B=\left(0,5+0,4\right)+\left(\dfrac{1}{3}+\dfrac{1}{6}\right)+\left(\dfrac{5}{7}-\dfrac{4}{35}\right)+\dfrac{1}{41}\\ \Rightarrow B=\dfrac{9}{10}+\dfrac{1}{2}+\dfrac{3}{5}+\dfrac{1}{41}\\ \Rightarrow B=2+\dfrac{1}{41}\\ \Rightarrow B=\dfrac{83}{41}.⇒B=(0,5+0,4)+(
3
1
+
6
1
)+(
7
5
−
35
4
)+
41
1
⇒B=
10
9
+
2
1
+
5
3
+
41
1
⇒B=2+
41
1
⇒B=
41
83
.
10) tính giá trị biểu thức
a) \(\dfrac{1}{2}\) x \(\dfrac{3}{4}\) + \(\dfrac{1}{2}\)
B) \(\dfrac{3}{4}\) : \(\dfrac{2}{3}\) - \(\dfrac{1}{6}\)
( ghi chi tiết giúp mk với )
a: =1/2(3/4+1)=1/2x7/4=7/8
b: =9/8-1/6=27/24-4/24=23/24
a.\(\dfrac{1}{2}\times\dfrac{3}{4}+\dfrac{1}{2}=\dfrac{1}{2}\times\left(\dfrac{3}{4}+1\right)=\dfrac{1}{2}\times\dfrac{7}{4}=\dfrac{7}{8}\)
b.\(\dfrac{3}{4}:\dfrac{2}{3}-\dfrac{1}{6}=\dfrac{3}{4}\times\dfrac{3}{2}-\dfrac{1}{6}=\dfrac{9}{8}-\dfrac{1}{6}=\dfrac{23}{24}\)
Cho biểu thức Q = \(\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{1-\sqrt{x}}\)
a) rút gọn Q
b) Tính giá trị của Q khi x = \(4+2\sqrt{3}\)
c) Tìm các giá trị của x để Q = 3
d) Tìm các giá trị cảu x để Q > \(\dfrac{1}{2}\)
e) Tìm x \(\in\) Z để Q = Z
a: \(Q=\dfrac{3x+3\sqrt{x}-3-x+1-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x-3\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)
b: Khi x=4+2căn 3 thì \(Q=\dfrac{\sqrt{3}+1-2}{\sqrt{3}+1+2}=\dfrac{-3+2\sqrt{3}}{3}\)
c: Q=3
=>3căn x+6=căn x-2
=>2căn x=-8(loại)
d: Q>1/2
=>Q-1/2>0
=>\(\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{1}{2}>0\)
=>2căn x-4-căn x-2>0
=>căn x>6
=>x>36
d: Q nguyên
=>căn x+2-4 chia hết cho căn x+2
=>căn x+2 thuộc Ư(-4)
=>căn x+2 thuộc {2;4}
=>x=0 hoặc x=4(nhận)
Thực hiện phép tính-tính nhanh giá trị biểu thức
A=19\(\dfrac{1}{4}\) + \(\dfrac{1}{2}\)x 2\(\dfrac{1}{3}\)+5,75 - \(\dfrac{1}{6}\)+74
B=[(\(\dfrac{1}{3}+\dfrac{1}{4}\))] x \(\dfrac{12}{19}+\dfrac{12}{19}\)] : \(\dfrac{4}{5}-\dfrac{1}{4}+2012\)
C=\(\dfrac{232323}{353535}:\dfrac{76x47-28}{76x46+48}\)
Mới thế đã hai năm trôi qua,câu trả lời từ mọi người vẫn KO XUẤT HIỆN.
Ko biết sau này câu trả lời có xuất hiện hay ko...
Tính giá trị biểu thức:
a) \(\dfrac{1}{3}-\dfrac{2}{15}+\dfrac{14}{15}\)
b) \(\dfrac{3}{5}+4-\dfrac{6}{7}\)
`1/3-2/15+14/15`
`=5/15-2/15+14/15`
`=17/15`
`3/5+4-6/7`
`=21/35+140/35-30/35`
`=131/35`
`1/3- 2/15 + 14/15`
`= 5/15 -2/15 + 14/15`
`=(5-2+14)/15`
`= 17/15`
`--`
`3/5 + 4 -6/7`
`= 3/5 + 20/5 - 6/7`
`= 23/5 - 6/7`
`= 131/35`
Tính giá trị của biểu thức sau: \(A=-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)
\(A=-\dfrac{1}{3}+\dfrac{1}{3^2}-...-\dfrac{1}{3^{99}}+\dfrac{1}{3^{100}}\)
\(=\dfrac{1}{3}\left(-1+\dfrac{1}{3}\right)+\dfrac{1}{3^3}\left(-1+\dfrac{1}{3}\right)+...+\dfrac{1}{3^{99}}\left(-1+\dfrac{1}{3}\right)\)
\(=\dfrac{-2}{3}\left(\dfrac{1}{3}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)\)
Ta có:
\(B=\dfrac{1}{3}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\)
\(9B=3+\dfrac{1}{3}+...+\dfrac{1}{3^{97}}\)
\(9B-B=3-\dfrac{1}{3^{99}}\)
\(B=\dfrac{3-\dfrac{1}{3^{99}}}{8}\)
\(A=-\dfrac{2}{3}B=\dfrac{-2}{3}.\dfrac{3-\dfrac{1}{99}}{8}=\dfrac{\dfrac{1}{3^{100}}-1}{4}\)
Cho A = \(\dfrac{1}{2014}\)+\(\dfrac{2}{2013}\)+\(\dfrac{3}{2012}\)+...+\(\dfrac{2013}{2}\)+2014
B = \(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)+...+\(\dfrac{1}{2015}\)
Tính giá trị \(\dfrac{A}{B}\)
A= 1+(\(\dfrac{1}{2014}\)+1)+(\(\dfrac{2}{2013}\)+1)+...+(\(\dfrac{2013}{2}\)+1)
= \(\dfrac{2015}{2015}\)+(\(\dfrac{1}{2014}\)+1)+(\(\dfrac{2}{2013}\)+1)+...+(\(\dfrac{2013}{2}\)+1)
= 2015.(\(\dfrac{1}{2015}\)+\(\dfrac{1}{2014}\)+\(\dfrac{1}{2013}\)+...+\(\dfrac{1}{2}\))=2015.B
\(\Rightarrow\) \(\dfrac{A}{B}\)=2015