Những câu hỏi liên quan
CC
Xem chi tiết
ST
26 tháng 2 2017 lúc 17:20

Ta có: \(\frac{a}{a+b}< \frac{a+c}{a+b+c}\)

 \(\frac{b}{b+c}< \frac{b+a}{a+b+c}\)

\(\frac{c}{c+a}< \frac{c+b}{a+b+c}\)

Cộng lại ta được:

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Vậy \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\left(đpcm\right)\)

Bình luận (0)
VP
26 tháng 2 2017 lúc 16:32

a=1425

Bình luận (0)
CC
26 tháng 2 2017 lúc 16:39

sao lại thế này 

Bình luận (0)
TL
Xem chi tiết
H24
Xem chi tiết
BH
Xem chi tiết
NB
18 tháng 4 2017 lúc 8:20

xét 2 trường hợp:

Nếu ƯCLN(a,c)=1=>từ ab \(⋮\)c\(\Rightarrow\)b\(⋮\)c\(\Rightarrow\)d chia hết cho a, ta có ab=cd suy ra \(\frac{b}{c}=\frac{d}{a}\)=k (k\(\in\)N*)

suy ra b=k.c,d=k.a

\(\Rightarrow a^n+b^n+c^n+d^n=a^n+k^n.c^n+c^n+k^n.a^n\)\(=\left(k^n+1\right).c^n+a^n.\left(k^n+1\right)\)

\(=\left(k^n+1\right).\left(a^n+c^n\right)\)vì k thuộc N nên \(k^n\)thuộc N*\(\Rightarrow\)k^n thuộc N* nên \(\left(k^n+1\right).\left(a^n+c^n\right)⋮k^n+1\)

nên \(a^n+b^n+c^n+d^n\)là hợp số

Nếu ƯCLN(a,c)=p.Đặt a=xp; c= yp

với ƯCLN(x,y)=1.Từ ab=cd suy ra

x.m.b=y.m.d\(\Rightarrow\)x.b=y.d

Chứng minh tương tự ta có \(a^n+b^n+c^n+d^n\)là hợp số

Bình luận (0)
BH
18 tháng 4 2017 lúc 7:56

ai làm đúng mình k cho

Bình luận (0)
TH
24 tháng 4 2017 lúc 20:33

Bảo siêu phết chốc

Bình luận (0)
NQ
Xem chi tiết
TA
Xem chi tiết
HT
Xem chi tiết
VD
Xem chi tiết
LL
Xem chi tiết
NC
29 tháng 11 2018 lúc 17:44

Câu hỏi của Hiền Hòa - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo bài làm ở link này nhé! :)

Bình luận (0)
NV
30 tháng 11 2018 lúc 19:43

em cam on co

Bình luận (0)