tính
A= \(\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21+26}+...+\frac{5}{61.66}\)
\(B=\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\)
\(B=\frac{5}{11.13}+\frac{5}{16.21}+...+\frac{5}{61.66}\)
\(\Rightarrow B=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)
\(\Rightarrow B=\frac{1}{11}-\frac{1}{66}\)
\(\Rightarrow B=\frac{5}{66}\)
\(\frac{5}{66}\)\(nha\)\(b\text{ạn}\)
\(theo\)\(mk\)\(l\text{à}\)\(th\text{ế}\)
\(ch\text{úc}\)\(b\text{ạn}\)\(h\text{ọc}\)\(t\text{ốt}\)
^_^ !
Tính:
a,\(A=\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{61.66}\)
b,\(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
c,\(C=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1989.1990}+...+\frac{1}{2006.2007}\)
a, \(A=\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{61.66}\)
\(A=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{61}-\frac{1}{66}\)
\(A=\frac{1}{11}-\frac{1}{66}\)
\(A=\frac{5}{66}\)
b, \(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(B=1-\frac{1}{7}\)
\(B=\frac{6}{7}\)
_Học tốt nha_
Tính nhanh :
a)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}...+\frac{1}{98.99}+\frac{1}{99.100}\)
b)\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{41.43}\)
c)\(\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{61.66}\)
d)\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{90}+\frac{1}{110}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
tính nhanh: \(\frac{1}{11.16}+\frac{1}{16.21}+\frac{1}{21.26}+...+\frac{1}{61.66}\)
\(\frac{1}{11.16}+\frac{1}{16.21}+\frac{1}{21.26}+...+\frac{1}{61.66}\)
=\(\frac{1}{5}.\frac{5}{11.16}+\frac{1}{5}.\frac{5}{16.21}+\frac{1}{5}.\frac{5}{21.26}+...+\frac{1}{5}.\frac{5}{61.66}\)
=\(\frac{1}{5}.\left(\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{61.66}\right)\)
=\(\frac{1}{5}.\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\right)\)
=\(\frac{1}{5}.\left(\frac{1}{11}-\frac{1}{66}\right)\)
=\(\frac{1}{5}.\left(\frac{6}{66}-\frac{1}{66}\right)=\frac{1}{5}.\frac{5}{66}=\frac{1}{66}\)
Đặt A = \(\frac{1}{11.16}+...+\frac{1}{61.66}\)
5A = \(\frac{5}{11.16}+..+\frac{5}{61.66}\)
5a = \(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)
5a = \(\frac{1}{11}-\frac{1}{61}\)
5a = 50/671
a = \(\frac{50}{671}:5=\frac{10}{671}\)
\(\frac{1}{11.16}+\frac{1}{16.21}\)\(+\frac{1}{21.26}+...+\frac{1}{61.66}\)
= \(\frac{1}{5}.\left(\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\right)\)
= \(\frac{1}{5}.\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\right)\)
= \(\frac{1}{5}.\left(\frac{1}{11}-\frac{1}{66}\right)\)
= \(\frac{1}{5}.\left(\frac{5}{6}\right)\)
=\(\frac{1}{6}\)
k mk nha !
Tính:
A=\(\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+.......+\frac{5^2}{56.69}\)
\(A=5.\left(\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{56.61}\right)\))
\(A=5.\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{56}-\frac{1}{61}\right)\)
\(A=5.\left(\frac{1}{11}-\frac{1}{61}\right)\)
\(A=5.\frac{50}{671}\)
\(A=\frac{250}{671}\)
Chúc em học tốt^^
\(A=\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+.....+\frac{5^2}{56.61}\)
\(=5.\left(\frac{5}{11.16}+\frac{5}{16.21}+.....+\frac{5}{56.61}\right)\)
\(=5.\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+....+\frac{1}{56}-\frac{1}{61}\right)\)
\(A=\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+...+\frac{5^2}{56.61}\)
\(A=5\left(\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{56.61}\right)\)
\(A=5\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{56}-\frac{1}{61}\right)\)
\(A=5\left(\frac{1}{11}-\frac{1}{61}\right)\)
\(A=5.\frac{50}{671}\)
\(A=\frac{250}{671}\)
Đây là câu trả lời của Đinh Nguyễn Nguyệt Hà
\(A=\frac{5.2}{1.6}+\frac{5.2}{6.11}+\frac{5.2}{11.16}+\frac{5.2}{16.21}+\frac{5.2}{21.26}+\frac{5.2}{26.31}\)
\(\frac{A}{2}=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+\frac{5}{26.31}\)
\(=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+\frac{1}{26}-\frac{1}{31}\)
\(=1-\frac{1}{31}=\frac{30}{31}\)
\(\Rightarrow A=\frac{30}{31}.2=\frac{60}{31}\)
Nếu tử là 52 thì cậu chuyển thành 5.5 rồi chuyển 5 sang vế trái thành A/5 nha, cũng giống như trên thui!!!!!!!!
Tính: A=5/11.16+5/16.21+...+5/61.66
\(=>A=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)
\(=>A=\frac{1}{11}-\frac{1}{66}\)
\(=>A=\frac{5}{66}\)
li ke nha
A= 5/11.16 + 5/16.21 + .....+5/61.66
A = 1/5.(5/11 - 5/16 + 5/16 - .......5/66)
A = 1/5 . 25/66 = 5/66
A = 5/11.16 + 5/16.21 + ... + 5/61/66
A = 1/11 - 1/16 + 1/16 - 1/21 + ... + 1/61 - 1/66
A = 1/11 - 1/66
A = 5/66
Tính các tổng sau:
a) A = \(\frac{1}{6}\)+ \(\frac{1}{12}\)+ \(\frac{1}{20}\)+ \(\frac{1}{30}\)+ \(\frac{1}{42}\) + \(\frac{1}{56}\)
b) B= \(\frac{5}{11.16}\)+ \(\frac{5}{16.21}\)+ .....+\(\frac{5}{61.66}\)
Các bạn làm nhanh giúp mình nhé
a/ \(A=\frac{1}{6}+\frac{1}{12}+.........+\frac{1}{56}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+..........+\frac{1}{7.8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.........+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{2}-\frac{1}{8}=\frac{3}{4}\)
b/ \(B=\frac{5}{11.16}+\frac{5}{16.21}+........+\frac{5}{61.66}\)
\(=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+........+\frac{1}{61}-\frac{1}{66}\)
\(=\frac{1}{11}-\frac{1}{66}\)
\(=\frac{5}{66}\)
a) \(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(A=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
b) \(B=\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\)
\(B=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)
\(B=\frac{1}{11}-\frac{1}{66}=\frac{5}{66}\)
a) \(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(A=\frac{1}{2}-\frac{1}{8}\)
\(A=\frac{3}{8}\)
b) \(B=\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\)
\(5B=5\left(\frac{1}{11.16}+\frac{1}{16.21}+...+\frac{1}{61.66}\right)\)
\(\Rightarrow B=\frac{1}{11.16}+\frac{1}{16.21}+...+\frac{1}{61.66}\)
\(B=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)
\(B=\frac{1}{11}-\frac{1}{66}\)
\(B=\frac{5}{66}\)
\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\)
Tính tổng trên bằng cách hợp lí
Đặt \(A=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\)
\(\Rightarrow A=\frac{5^2}{5}\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+\frac{1}{26}-\frac{1}{31}\right)\)
\(\Rightarrow A=5.\left(1-\frac{1}{31}\right)=5.\frac{30}{31}=\frac{150}{31}\)