Find the remainder in the division of by .
Answer: The remainder is
Find the remainder in the division of (x^2+x^9-x^(1945)+1) by x+1.
Find the value of the remainder of the division
\(\left(7x-2x^3+4x^4-5\right):\left(x^2+2\right)\)with \(x=\frac{-1}{11}\)
Answer: The value of the remainder is ....
Nhah nha đag cần gấp
Câu 1 : the remainder in the division of \(\left(x^3-25x+1\right)by\left(x+4\right)\)
Câu 2 : the remainder in the division of \(\left(x^3-3x-16\right)by\left(x-4\right)\)
Given that A=1^n+2^n+.....+98^n, where n is an odd possitive number. Fine the remainder in the division of A by 5
the largest remainder in the division by 18?
The largest remainder in the division by 18
Số dư luôn bé hơn số chia
=> số dư lớn nhất nếu số chia là 18 là :
18 - 1 = 17
đ/s : ...
Translate: Số dư lớn nhất trong phép chia cho 18.
Answer: 17 (Seventeen)
The largest remainder in the division by 18?
Exer 1: There is a division with the quotient is 6 and the remainder is 3. The sum of dividend, divisor and remainder are 195. Find the dividend are divisor.
Exer 2: Prove that: Amoney three consecutive natural numbers, there is one only one the number which divisibles by 3.
Exer 3: Given natural number, n = \(\overline{1ab1}\). Let m be the natural number which is written the opposite respectively of n. Prove that the different of n and m divisibles by 90.
Exer 1:
Trả lời:
The sum of dividend and divisor are:
195 - 3 = 192
Because the quotient is 6.
The divisor is:
(192-3) : (6+1) = 27
The dividend is:
192 - 27 = 165
Exer 2:
Trả lời:
Let three unknow numbers be: n, n + 1, n + 2.
Because n has three forms: 3k, 3k + 1, 3k + 2.
+) If n
Xin lỗi, mình vẫn chưa viết xong, rồi mình viết tiếp đây:
+) If n = 3k then there is only n divisibles by 3.
+) If n = 3k + 1 then there is only n + 2 divisibles by 3.
+) If n = 3k + 2 then there is only n + 1 divisibles by 3.
Thus, amoney three consecutive natural numbers, there is one only one the number which divisibles by 3.
Exer 3:
Trả lời:
When we written the opposite respectively of n, we obtain \(\overline{1ba1}\).
We have:
\(\overline{1ab1}\) + \(\overline{1ba1}\) = (1000 + 100a + 10b + 1) - (1000 + 100b + 10a + 1)
= 90a - 90b
= 90(a - b)\(⋮\) 90
Thus, the difference of n and m which divisibles by 90.
fine the remainder in the division of \(x^{30}+x^4-x^{1975}+1\) by x-1
Áp dụng định lý Bézout (Số dư trong phép chia đa thức f(x) cho nhị thức x-a bằng giá trị của f(a), ta được: số dư là 1
x^30+x^4-x^1975+1=(x-1).Q(x)+R ( R là số dư)
lấy x-1=0 thế x=1 vào 1^30+1^4-1^1975+1=2 . vẬY SỐ DƯ LÀ 2