Tìm \(x\in Z\) để \(C=\frac{15x^2-7x-5}{2x-3}\in Z\)
\(D=\frac{15\sqrt{x}-3}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a, rút gọn
b, tìm x để B < -4
c, tìm x \(\in\)Z để D \(\in\)Z
d, tìm GTLN của D
\(Q=\left(\frac{\sqrt{x}}{2+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)
a, rút gọn
b, tìm Q < -1
c, tìm x để Q = \(\frac{-3}{4}\)
d, tìm x \(\in\)Z để Q \(\in\)Z
Tìm x \(\in\) Z để mỗi phân số sau nhận giá trị nguyên
\(\frac{x-5}{2x+1}\)
Tìm \(x\in Z\) để \(A\in Z\), \(B\in Z\)
a) \(A=\frac{3x^2-8x+1}{x-3}\) \(B=\frac{x^4+2x^3+5x+10}{x^2+4x+4}\)
\(A=\frac{3x^2-8x+1}{x-3}=\frac{3\left(x^2-6x+9\right)+10\left(x-3\right)+4}{x-3}=\frac{3\left(x-3\right)^2+10\left(x-3\right)+4}{x-3}=3\left(x-3\right)+10+\frac{4}{x-3}\)
A là số nguyên khi (x-3) là ước của 4 . Liệt kê ra.
Tìm x, y, z biết:
a) 3x = 2y; 7x = 5z và x-y+z=32
b)\(\frac{2x}{3}\)= \(\frac{3y}{4}=\frac{4z}{5}\) và x+y+z= 49
c) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\)và 2x+ 3y- z= 50
\(a,\) \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\left(1\right)\)
\(7x=5z\Rightarrow\frac{x}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{z}{14}\left(2\right)\)
Từ (1) và (2) ta có: \(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}\) và \(x-y+z=32\)
Áp dụng t/c DTSBN ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}=\frac{x-y+z}{10-15+14}=\frac{32}{9}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{32}{9}\Rightarrow x=\frac{320}{9}\\\frac{y}{15}=\frac{32}{9}\Rightarrow y=\frac{160}{3}\\\frac{z}{14}=\frac{32}{9}\Rightarrow z=\frac{2560}{189}\end{cases}}\)
Vậy \(x=\frac{320}{9};y=\frac{160}{3};z=\frac{2560}{189}\)
các câu còn lại lm tương tự nhé
\(a,3x=2y=>\frac{x}{2}=\frac{y}{3}=>\frac{x}{10}=\frac{y}{15}\)(1)
\(7x=5z=>\frac{x}{5}=\frac{z}{7}=>\frac{x}{10}=\frac{z}{14}\)(2)
Từ 1 và 2 \(=>\frac{x}{10}=\frac{y}{15}=\frac{z}{14}\)
Áp dụng tc của dãy tỉ số bằng nhau :
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}=\frac{x-y+z}{10-15+14}=\frac{32}{9}\)
\(=>\hept{\begin{cases}\frac{x}{10}=\frac{32}{9}=>9x=320=>x=\frac{320}{9}\\\frac{y}{15}=\frac{32}{9}=>9y=480=>y=\frac{480}{9}\\\frac{z}{14}=\frac{32}{9}=>9z=448=>z=\frac{448}{9}\end{cases}}\)
Vậy ,,,
Tìm \(x\in Z\) để \(\frac{8}{\sqrt{x}+5}\) nhận giá trị nguyên
\(\sqrt{x}\ge0\Rightarrow\sqrt{x}+5\ge5\)
\(\frac{8}{\sqrt{x}+5}\in Z\Leftrightarrow8⋮\sqrt{x}+5\Leftrightarrow\sqrt{x}+5\inƯ\left(8\right)=\left\{8\right\}\)
roi giai ra x =
Để \(\frac{8}{\sqrt{x}+5}\in Z\) <=> \(8⋮\sqrt{x}+5\)
<=> \(\sqrt{x}+5\)\(\in\)Ư(8) = {1; -1; 2; -2; 4; -4; 8; -8}
Do \(\sqrt{x}\ge0\) => \(\sqrt{x}+5\ge5\)
=> \(\sqrt{x}+5=8\)
=> \(\sqrt{x}=8-5\)
=> \(\sqrt{x}=3\)
=> \(x=9\)
M = \(\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right)\div\left(x-2+\frac{10-x^2}{x+2}\right)\)
a) Tìm Tập xác định
b) Rút gọn M
c) Tìm M khi \(\left|x\right|\) = \(\frac{1}{2}\)
d) Tìm \(x\in Z\) để \(M\in Z\)
a: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
b: \(M=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right):\dfrac{x^2-4+10-x^2}{x+2}\)
\(=\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{6}\)
\(=\dfrac{-1}{x-2}\)
d: Để M nguyên thì \(x-2\in\left\{1;-1\right\}\)
hay \(x\in\left\{3;1\right\}\)
1. Tìm a,b \(\in\) Z: ab-7b+5a=0 và b \(\ge\) 0
2. Tìm x,y,z:
\(\sqrt{x-2015}+\sqrt{y-2016}+\sqrt{z-2017}+3022,5=\frac{1}{2}\left(x+y+z\right)\)
3. Ba lớp 6 của 1 trường có 98 hs. Nếu đưa 1/4 hs 6A; 1/5 hs 6B; 1/3 hs 6C đi thi HSG huyện thì số hs còn lại của 3 lớp bằng nhau. Tính tổng số hs mỗi lớp của trường
4.Tìm max: C= \(\frac{7x-8}{2x-3}\) vs x \(\in Z\)
1. ab-7b+5a=0
=> 7b= ab+5a
=>ab-ab+5a+5a=0
=>10a=0 =>a=0. Xong ta thay a vào thì
0b-7a+5a=0 => b=0
Tìm x thuộc Z để: \(B=\frac{7x-8}{2x-3}\) đạt giá trị lớn nhất
Mơn mn trước ha!!!!!!!!!!!!!!!!!!!!!!