Giải phương trình: \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
giải phương trình
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
ĐKXĐ: \(x\in R\)
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
=>\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}+x^2+2x-4=0\)
\(\Leftrightarrow\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}+x^2+2x+1-5=0\)
=>\(\sqrt{3x^2+6x+7}-2+\sqrt{5x^2+10x+14}-3+\left(x+1\right)^2=0\)
=>\(\dfrac{3x^2+6x+7-4}{\sqrt{3x^2+6x+7}+2}+\dfrac{5x^2+10x+14-9}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)
=>
\(\dfrac{3x^2+6x+3}{\sqrt{3x^2+6x+7}+2}+\dfrac{5x^2+10x+5}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)
=>\(\dfrac{3\left(x^2+2x+1\right)}{\sqrt{3x^2+6x+7}+2}+\dfrac{5\left(x^2+2x+1\right)}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)
\(\Leftrightarrow\dfrac{3\left(x+1\right)^2}{\sqrt{3x^2+6x+7}+2}+\dfrac{5\left(x+1\right)^2}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)
=>\(\left(x+1\right)^2\left(\dfrac{3}{\sqrt{3x^2+6x+7}+2}+\dfrac{5}{\sqrt{5x^2+10x+14}+3}+1\right)=0\)
=>\(\left(x+1\right)^2=0\)
=>x+1=0
=>x=-1(nhận)
Giải phương trình: \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
Ta có : \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=-x^2-2x+4\)
Trước hết ta xét xem \(f\left(x\right)=-x^2-2x+4\) là hàm số đồng biến hay nghịch biến.Xét \(x_1< x_2< -1\), khi đó : \(f\left(x_1\right)-f\left(x_2\right)=-x_1^2-2x_1+4+x_2^2+2x_2-4=\left(x_2-x_1\right)\left(x_2+x_1+2\right)< 0\)
\(\Rightarrow f\left(x_1\right)< f\left(x_2\right)\). Vậy f(x) đồng biến với mọi \(x< -1\)
Tương tự ta chứng minh được :
f(x) nghịch biến với mọi x > -1\(f'\left(x\right)=\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}\) đồng biến với mọi x > -1\(f'\left(x\right)=\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}\) nghịch biến với mọi x < -1+ Với x = -1 thì VT = VP => là nghiệm của pt trên
+ Với x < -1 thì do \(f'\left(x\right)\) nghịch biến nên VT > 5 , \(f\left(x\right)\) đồng biến nên VP < 5 => vô lí
+ Với x > -1 thì do \(f'\left(x\right)\) đồng biến nên VT > 5 , \(f\left(x\right)\)nghịch biến nên VP < 5 => vô lí
Vậy x = -1 là nghiệm duy nhất của phương trình.
Ta có
\(\sqrt{3x^2+6x+7}=\sqrt{3\left(x+1\right)^2+4}\ge2\)
\(\sqrt{5x^2+10x+14}=\sqrt{5\left(x+1\right)^2+9}\ge3\)
4 - 2x - x2 = 5 - (x + 1)2 \(\le5\)
Ta có VT \(\ge5\);VP \(\le\)5
Nên dấu bằng xảy ra khi x = - 1
Ta có : √3x2+6x+7+√5x2+10x+14=−x2−2x+4
Trước hết ta xét xem ƒ (x)=−x2−2x+4 là hàm số đồng biến hay nghịch biến.Xét x1<x2<−1, khi đó : ƒ (x1)−ƒ (x2)=−x12−2x1+4+x22+2x2−4=(x2−x1)(x2+x1+2)<0
⇒ƒ (x1)<ƒ (x2). Vậy f(x) đồng biến với mọi x<−1
Tương tự ta chứng minh được :
f(x) nghịch biến với mọi x > -1ƒ '(x)=√3x2+6x+7+√5x2+10x+14 đồng biến với mọi x > -1ƒ '(x)=√3x2+6x+7+√5x2+10x+14 nghịch biến với mọi x < -1+ Với x = -1 thì VT = VP => là nghiệm của pt trên
+ Với x < -1 thì do ƒ '(x) nghịch biến nên VT > 5 , ƒ (x) đồng biến nên VP < 5 => vô lí
+ Với x > -1 thì do ƒ '(x) đồng biến nên VT > 5 , ƒ (x)nghịch biến nên VP < 5 => vô lí
Vậy x = -1 là nghiệm duy nhất của phương trình.
Giải phương trình:
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
ta có
zế trái :\(\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\ge\sqrt{4}+\sqrt{9}=5\)
zế phải : \(4-2x-x^2=5-\left(x+1\right)^2\le5\)
zậy 2 zế đều = 5 , khi đó x=-1 . Zới giá trị này cả 2 bất đẳng thức này đều trở thành đẳng thức
KL ::
\(a,\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
\(b,\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\)
Giải phương trình
a/ \(\hept{\begin{cases}VT=\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\ge2+3=5\\VP=4-2x-x^2=5-\left(x+1\right)^2\le5\end{cases}}\)
Dấu = xảy ra khi \(x=-1\)
b/ \(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\)
Đặt \(\hept{\begin{cases}\sqrt{x-2}=a\ge0\\\sqrt{4-x}=b\ge0\end{cases}}\)thì ta có
\(\hept{\begin{cases}a^2+b^2=2\\a+b=-a^2b^2+3\end{cases}}\)
Đặt \(\hept{\begin{cases}a+b=S\\ab=P\end{cases}}\) thì ta có
\(\hept{\begin{cases}S^2-2P=2\\S=3-P^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(3-P^2\right)^2-2P=2\\S=3-P^2\end{cases}}\)
Thôi làm tiếp đi làm biếng quá.
a)√3x2+6x+7+√5x2+10x+14=4−2x−x2
\(\Leftrightarrow16x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}+21\)
\(\Leftrightarrow-x^2-2x+4\)
Thế vào ta được:
\(x^2+18x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}=-17\)
\(x^2+18x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}+17=0\)
\(16x+\left(\sqrt{6}+\sqrt{10}\right)\sqrt{x}+21=4-x\left(x+2\right)\)
b)√x−2+√4−x=x2−6x+11
\(\Leftrightarrow\sqrt{x}-x=x^2-6x+11\)
\(\Leftrightarrow\sqrt{x}-x\)
\(\Leftrightarrow x^2-6x+11\)
\(\Leftrightarrow-x^2+5x+\sqrt{x}=11\)
\(\Leftrightarrow\sqrt{x}-x=\left(x-6\right)x+11\)
\(\Leftrightarrow-\left(\sqrt{x}-1\right)\sqrt{x}=x^2-6x+11\)
Tới đây thì đơn giản rồi nhé!
Giải phương trình \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
Giải phương trình \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
giải phương trình
a, \(\sqrt{x-1}-\sqrt{5x-1}=\sqrt{3x-2}\)
b , \(\sqrt{3x^2+6x+7}-\sqrt{5x^2+10x+14}=4-2x-x^2\)
Câu a:
ĐKXĐ: \(x\geq 1\)
\(\sqrt{x-1}-\sqrt{5x-1}=\sqrt{3x-2}\)
\(\Leftrightarrow \sqrt{x-1}=\sqrt{3x-2}+\sqrt{5x-1}\)
\(\Rightarrow x-1=8x-3+2\sqrt{(3x-2)(5x-1)}\) (bình phương 2 vế)
\(\Leftrightarrow 7x-2+2\sqrt{(3x-2)(5x-1)}=0\)
(Vô lý với mọi \(x\geq 1\) )
Do đó PT vô nghiệm.
Câu b)
PT \(\Leftrightarrow \sqrt{3(x^2+2x+1)+4}+\sqrt{5(x^2+2x+1)+9}=5-(x^2+2x+1)\)
\(\Leftrightarrow \sqrt{3(x+1)^2+4}+\sqrt{5(x+1)^2+9}=5-(x+1)^2\)
Vì \((x+1)^2\geq 0, \forall x\) nên:
\(\sqrt{3(x+1)^2+4}\geq \sqrt{4}=2\)
\(\sqrt{5(x+1)^2+9}\geq \sqrt{9}=3\)
\(\Rightarrow \sqrt{3(x+1)^2+4}+\sqrt{5(x+1)^2+9}\geq 5(1)\)
Mặt khác ta cũng có: \(5-(x+1)^2\leq 5-0=5(2)\)
Từ \((1);(2)\Rightarrow \sqrt{3(x+1)^2+4}+\sqrt{5(x+1)^2+9}\geq 5\geq 5-(x+1)^2\)
Dấu "=" xảy ra khi $(x+1)^2=0$ hay $x=-1$ (thỏa mãn)
Vậy pt có nghiệm $x=-1$
Giải phương trình :\(\sqrt[4]{3x^2+6x+19}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
đề hình như ko có căn bậc 4 chỉ có căn bậc 2 thui
mà căn bậc 4 thì x=-1
Giải phương trình: \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
Ta có \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=\sqrt{3\left(x^2+2x+1\right)+4}+\sqrt{5\left(x^2+2x+1\right)+9}=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\ge\sqrt{4}+\sqrt{9}=2+3=5\left(1\right)\)\(4-2x-x^2=-\left(x^2+2x-4\right)=-\left(x^2+2x+1-5\right)=-\left(x+1\right)^2+5\le5\left(2\right)\)
Từ (1),(2)\(\Rightarrow5\le-\left(x-1\right)^2+5\le5\Rightarrow-\left(x-1\right)^2+5=5\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\left(tm\right)\)