Cho \(\frac{a}{2013}=\frac{b}{2014}=\frac{c}{2015}\). Chứng minh 4(a-b)(b-c)=(c-a)2
Cho \(\frac{a}{2013}=\frac{b}{2014}=\frac{c}{2015}\). Chứng minh 4(a-b)(b-c)=(c-a)2
Đặt \(\frac{a}{2013}=\frac{b}{2014}=\frac{c}{2015}=k\) => a=2013k; b=2014k; c=2015k
Ta có: 4(a-b)(b-c) = 4(2013k-2014k)(2014k-2015k)
= 4(-k)(-k) = 4k2 (1)
Lại có: (c-a)2 = (2015k-2013k)2 = (2k)2 = 4k2 (2)
Từ (1) và (2) => 4(a-b)(b-c)=(c-a)2 (đpcm)
Tính: A= \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{2013+\frac{2013}{2}+\frac{2012}{3}+...+\frac{1}{2014}}\)
Bài 2: Cho \(\frac{a}{b}< \frac{c}{d}\) và b;d>0
Chứng Minh: \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Bài 2)
Ta có \(\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow ad< bc\)
Xét \(\frac{a}{b}< \frac{a+c}{b+d}\)
\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow ab+ad< ab+bc\)
\(\Rightarrow ad< bc\) ( thỏa mãn đề bài )
Vậy \(\frac{a}{b}< \frac{a+c}{b+d}\) (1)
Xét \(\frac{a+c}{b+d}< \frac{c}{d}\)
\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow ad+cd< bc+cd\)
\(\Rightarrow ad< bc\) ( thỏa mãn đề bài )
Vậy \(\frac{a+c}{b+d}< \frac{c}{d}\) (2)
Từ (1) và (2)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\) (đpcm)
cho a,b,c thỏa mãn \(\frac{a}{2012}=\frac{b}{2013}=\frac{c}{2014}\)
chứng minh rằng 4(a-b)(b-c)=(c-a)2
cho\(\frac{a}{2013}\) =\(\frac{b}{2014}\)=\(\frac{c}{2015}\). CMR: 4(a-b)(b-c)=\(\text{(c-a)}^2\)
Đặt \(\frac{a}{2013}\) = \(\frac{b}{2014}\) = \(\frac{c}{2015}\) = k
nên a = 2013k; b = 2014k và c = 2015k
Xét hiệu:
4(2013k - 2014k)(2014k - 2015k) - (2015k - 2013k)2
= 4(-k)(-k) - (2k)2
= 4k2 - 4k2 = 0
Vậy 4(a - b)(b - c) = (c - a)2.
bài1)tính: \(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{2013+\frac{2013}{2}+\frac{2012}{3}+...+\frac{1}{2014}}\)
bài 2) cho\(\frac{a}{b}< \frac{c}{d}\) và\(b;d>0\)
CHỨNG MINH RẰNG: \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
CÁC BẠN GIÚP CHI NHÉ!!!!! MINK SE LIKE CHO!!!
Ta có : \(\frac{a+2014}{a-2014}=\frac{a+2015}{a-2015}\)
\(\Rightarrow\left(a+2014\right)\left(a-2015\right)=\left(a-2014\right)\left(a+2015\right)\)
\(\Rightarrow a^2-a-2014.2015=a^2+a-2014.2015\)
\(\Leftrightarrow a^2-a=a^2+a\)
=> a2 - a2 - a = a
=> -a = a
=> 0 = a + a
=> 2a = 0
=> a = 0
Vậy \(\frac{a}{2014}=\frac{b}{2015}\) (đpcm)
cho 3 sơn thức a,b,c thỏa mãn
\(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}\)
chứng minh rằng: 4(a-b) (b-c) = (c-a)2
giải hẳn ra
\(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=\frac{a-b}{2014-2015}=\frac{b-c}{2015-2016}=\frac{c-a}{2016-2014}\)
=\(\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}\)=>\(\frac{\left(a-b\right)\left(b-c\right)}{\left(-1\right)\left(-1\right)}=\frac{\left(c-a\right)^2}{2^2}=\frac{\left(a-b\right)\left(b-c\right)}{1}=\frac{\left(c-a\right)^2}{4}\Leftrightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
Cho A= \(\frac{4+\frac{4}{2012}-\frac{4}{2013}+\frac{4}{2014}-\frac{4}{2015}}{\frac{7}{2014}-\frac{7}{2015}+\frac{7}{2012}-\frac{7}{2013}+7}\)
Và B= \(\frac{1+2+2^2+...+2^{2013}}{2^{2015}-2}\)
Tính A - B
p/S: LM ƠN GIÚP TỚ VS :
\(TA-CO':\)
\(A=\frac{4+\frac{7}{2014}-\frac{7}{2015}+\frac{7}{2012}-\frac{7}{2013}}{7+\frac{7}{2014}-\frac{7}{2015}+\frac{7}{2012}-\frac{7}{2013}}\)
\(A=\frac{4\left(\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2012}-\frac{1}{2013}\right)}{7\left(\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2012}-\frac{1}{2013}\right)}\)
\(A=\frac{4}{7}\)
\(B=\frac{1+2+...+2^{2013}}{2^{2015}-2}\)
ĐẶT \(C=1+2+...+2^{2013}\)
\(\Rightarrow2C=2+2^2+...+2^{2014}\)
\(\Rightarrow2C-C=\left(2+2^2+...+2^{2014}\right)-\left(1+2+...+2^{2013}\right)\)
\(\Rightarrow C=2^{2014}-2\)
\(\Rightarrow B=\frac{2^{2014}-1}{2^{2015}-2}\)
\(B=\frac{2^{2014}-1}{2\left(2^{2014}-1\right)}\)
\(B=\frac{1}{2}\)
\(\Rightarrow A-B=\frac{3}{7}-\frac{1}{2}=\frac{6}{14}-\frac{7}{14}\)
\(A-B=\frac{6-7}{14}=\frac{-1}{14}\)
VẬY, \(A-B=\frac{-1}{14}\)
Mọi người ơi giúp em với ạ!
C1. Cho \(\overline{\frac{abc}{\overline{bca}}}\)= \(\overline{\frac{bca}{\overline{cab}}}\). Chứng minh \(\frac{a}{\overline{bc}}\)= \(\frac{b}{\overline{ca}}\)
C2. Cho \(\frac{a}{b}\)= \(\frac{b}{c}\)= \(\frac{c}{a}\), a + b +c khác 0. Tính M = \(\frac{x^3b^2c^{2010}}{b^{2015}}\)
C3. Chứng minh (\(\frac{9}{10}\)- 0,81)2013 = ( \(\frac{9}{10}\))2013 . \(\frac{1}{10^{2013}}\)
C4.a) Cho\(\frac{2014z-2015y}{2013}\)= \(\frac{2015x-2013z}{2014}\)= \(\frac{2013y-2014x}{2015}\). Chứng minh \(\frac{x}{2013}\)= \(\frac{y}{2014}\)= \(\frac{z}{2015}\)
b) Cho \(\frac{a}{b}\)= \(\frac{c}{d}\). Chứng minh \(\frac{2a+b}{3a-7b}\)= \(\frac{2c+d}{3c-7d}\)
C5. Cho \(\frac{a}{3}\)= \(\frac{b}{4}\). Tính giá trị biểu thức T = \(\frac{2a^2-3ab+b^2}{a^2+2ab-3b^2}\)
bài gì khó thế!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
bí bí bí