Những câu hỏi liên quan
DV
Xem chi tiết
TL
18 tháng 7 2015 lúc 14:27

Viết lại dãy phân số: \(\frac{4}{3};\frac{9}{8};\frac{16}{15};\frac{25}{24};\frac{36}{35};...\) hay \(\frac{2^2}{1.3};\frac{3^2}{2.4};\frac{4^2}{3.5};\frac{5^2}{4.6};\frac{6^2}{5.7};...\)

=> Số hạng  thứ 98 là : \(\frac{99^2}{98.100}\)

=> Tích cần tính = \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}.\frac{6^2}{5.7}....\frac{99^2}{98.100}=\frac{\left(2.3.4...99\right)^2}{\left(1.2.3...98\right).\left(3.4.5....100\right)}=\frac{99.2}{100}=\frac{99}{50}\)

Bình luận (0)
H24
18 tháng 7 2015 lúc 14:30

Các số hạng đc viết dưới dạng: \(\frac{2^2}{1.3};\frac{3^2}{2.4};\frac{4^2}{3.5};.........\)

=> Số hạng thứ 98 có dạng \(\frac{99^2}{98.100}\)

Vậy ta cần tính tích:

A = \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}........\frac{99^2}{98.100}\)

   = \(\frac{\left(2.3.4..........99\right)\left(2,3,4,,,,,,,,,,,,99\right)}{\left(1.2.3.......98\right)\left(3.4.5.........100\right)}\)

   =\(\frac{99.2}{1.100}=\frac{99}{50}\)

Bình luận (0)
ML
26 tháng 3 2017 lúc 10:30

Tích của 98 số hạng đầu tiên của dãy trên là \(\frac{99}{50}\).

Bình luận (0)
LD
Xem chi tiết
BT
Xem chi tiết
TT
Xem chi tiết
DB
Xem chi tiết
LP
10 tháng 7 2023 lúc 17:55

a) Ta viết lại dãy đã cho thành \(1\dfrac{1}{3},1\dfrac{1}{8},1\dfrac{1}{15},...\)

 Ta có thể thấy mẫu số của phần phân số trong các hỗn số của dãy là dãy các tích của 2 số cách nhau 2 đơn vị kể từ \(1.3\). Chẳng hạn \(3=1.3\)\(8=2.4\)\(15=3.5,...\) Do đó ta rút ra công thức số hạng tổng quát của dãy là \(u_n=1\dfrac{1}{n\left(n+2\right)}\)\(1+\dfrac{1}{n\left(n+2\right)}=\dfrac{n^2+2n+1}{n\left(n+2\right)}=\dfrac{\left(n+1\right)^2}{n\left(n+2\right)}\)

 b) Ta cần tính \(u_1.u_2...u_{98}\). Ta thấy rằng 

\(u_1.u_2...u_{98}\) \(=\dfrac{\left(1+1\right)^2}{1.3}.\dfrac{\left(2+1\right)^2}{2.4}.\dfrac{\left(3+1\right)^2}{3.5}...\dfrac{\left(98+1\right)^2}{97.99}\) \(=\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.\dfrac{6^2}{4.6}...\dfrac{98^2}{97.99}.\dfrac{99^2}{98.100}\) \(=\dfrac{2.99}{100}=\dfrac{99}{50}\)

Bình luận (0)
LP
10 tháng 7 2023 lúc 17:57

Chỗ này mình bị thiếu dấu "=" 

Bình luận (0)
NT
10 tháng 7 2023 lúc 18:39

a) \(1\&\dfrac{1}{1.3};1\&\dfrac{1}{2.4};1\&\dfrac{1}{3.5};1\&\dfrac{1}{4.6};...1\&\dfrac{1}{n.\left(n+2\right)}\left(n\in\right)N^{\cdot}\)

b) \(\dfrac{1}{1.3}.\dfrac{1}{2.4}.\dfrac{1}{3.5}.\dfrac{1}{4.6}....\dfrac{1}{98.100}\)

\(=\dfrac{1}{1.2.3...97}.\dfrac{1}{3.4.5...97}.\dfrac{1}{98.100}\)

\(=\dfrac{1}{97!}.\dfrac{1.2}{1.2.3.4.5...97}.\dfrac{1}{98.100}\)

\(=\dfrac{1}{50.98}.\dfrac{1}{\left(97!\right)^2}=\dfrac{1}{4900.\left(97!\right)^2}\)

Bình luận (0)
TB
Xem chi tiết
NH
25 tháng 6 2021 lúc 21:45

\(1\dfrac{1}{3}=1\dfrac{1}{\left(1+2\right)1};1\dfrac{1}{8}=1\dfrac{1}{\left(2+2\right)2}\)

số thứ 98 = \(1\dfrac{1}{\left(98+2\right)98}=1\dfrac{1}{9800}\)

Bình luận (0)
SS
Xem chi tiết
DD
Xem chi tiết
KH
Xem chi tiết
MM
2 tháng 10 2017 lúc 22:06

số hạng thứ 100 là 100x+199

x=10

Bình luận (0)
PH
Xem chi tiết
YA
30 tháng 5 2018 lúc 18:15

Số hạng thứ 100 là 100x + 199

x =10

Bình luận (0)