Những câu hỏi liên quan
HT
Xem chi tiết
LQ
31 tháng 12 2023 lúc 21:49

Chúc mừng năm mới!

Bình luận (0)
TT
31 tháng 12 2023 lúc 21:57

3p nx 10h đêm

Bình luận (0)
H24
31 tháng 12 2023 lúc 21:58
Ya ❗❗ Hôm nay là ngày 31-12-2023.Ngày cuối cùng của năm 2023 rồi nè!

Có thể nói năm 2023 khép lại với đầy ý nghĩa và biến cố ngỡ ngàng.. để mở ra một năm 2024 sẽ đầy khó khăn và thử thách hơn,mong rằng năm 2024 sẽ mở ra thật nhiều cơ hội cho tất cả mọi người,các bạn đã sẵn sàng chưa nè ? 

Cuối năm rồi ai có những buồn phiền hay những cảm xúc tiêu cực thì xua tan đi nhé<3 Tớ cũng cảm ơn hoc24 rất nhiều cảm ơn các bạn trên hoc24 đã chia sẽ niềm vui,hạnh phúc cho tớ!Hy vọng rằng khi năm 2023 trôi qua,khi đón chào một năm 2024 thì hoc24 vẫn sẽ hoạt động sôi nỗi như mọi khi💞💞

Chúc các bạn một năm 2024 an lành,càng ngày học giỏi,đạt nhiều thành tích tốt❣ (Chúc riêng ai đó càng ngày càng chinh đẹp hơn😣)

Bình luận (1)
Xem chi tiết
KK
31 tháng 12 2019 lúc 17:11

bn viết xoáy ๖ۣۜCẩм ๖ۣۜLүღ__ kiểu j vậy ?

Bình luận (1)

Hay lắm

Bình luận (0)
LH
2 tháng 1 2020 lúc 21:18

cảm ơn

Bình luận (1)
KK
Xem chi tiết

Sao chép bản quyền kinh thế bn

Bình luận (0)
H24
1 tháng 1 2020 lúc 14:56

ĐỒ ĂN CẮP BẢN QUYỀN

Bình luận (0)
KK
3 tháng 1 2020 lúc 12:44

sory

Bình luận (0)
DL
Xem chi tiết
QL
Xem chi tiết
TH
3 tháng 1 2023 lúc 15:16

Em xin giải bài toán kia nhé :)

Trước hết ta có hằng đẳng thức:

\(x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5=\left(x+y\right)^5\)

Biến đổi hằng đẳng thức trên:

\(x^5+y^5+5xy\left(x^3+2x^2y+2xy^2+y^3\right)=\left(x+y\right)^5\)

\(\Rightarrow x^5+y^5+5xy\left[\left(x+y\right)\left(x^2-xy+y^2\right)+2xy\left(x+y\right)\right]=\left(x+y\right)^5\)

\(\Rightarrow x^5+y^5+5xy\left(x+y\right)\left(x^2+xy+y^2\right)=\left(x+y\right)^5\) (*)

Quay lại bài toán trên:

Theo BĐT Cauchy ta có:

\(\left\{{}\begin{matrix}\sqrt{xy}\le\dfrac{x+y}{2}\left(1\right)\\2xy\le x^2+y^2\Rightarrow3xy\le x^2+xy+y^2\Rightarrow xy\le\dfrac{x^2+xy+y^3}{3}\left(2\right)\end{matrix}\right.\)

Vì cả 2 vế của BĐT (1) và (2) đều dương nên lấy \(\left(1\right).\left(2\right)\) ta được:

\(xy\sqrt{xy}\le\dfrac{1}{6}\left(x+y\right)\left(x^2+xy+y^2\right)\)

\(\Rightarrow x^5+2023xy.xy\sqrt{xy}+y^5\le x^5+\dfrac{2023}{6}xy.\left(x+y\right)\left(x^2+xy+y^2\right)+y^5\left(3\right)\)

Đặt \(A=x^5+\dfrac{2023}{6}xy.\left(x+y\right)\left(x^2+xy+y^2\right)+y^5\)

\(=\dfrac{6x^5+2023xy\left(x+y\right)\left(x^2+xy+y^2\right)+6y^5}{6}\)

\(=\dfrac{6\left[x^5+5xy\left(x+y\right)\left(x^2+xy+y^2\right)+y^5\right]+1993xy\left(x+y\right)\left(x^2+xy+y^2\right)}{6}\)

Áp dụng (*) ta có:

\(A=\dfrac{6\left(x+y\right)^5+1993xy\left(x+y\right)\left(x^2+xy+y^2\right)}{6}\left(4\right)\)

Ta có: \(xy\left(x+y\right)\left(x^2+xy+y^2\right)\)

\(=\dfrac{1}{3}.3xy\left(x^2+xy+y^2\right)\left(x+y\right)\)

Theo BĐT Cauchy ta có:

\(3xy\left(x^2+xy+y^2\right)\le\left[\dfrac{3xy+\left(x^2+xy+y^2\right)}{2}\right]^2=\left[\dfrac{\left(x+y\right)^2+2xy}{2}\right]^2\left('\right)\)

\(xy\le\left(\dfrac{x+y}{2}\right)^2=\dfrac{\left(x+y\right)^2}{4}\left(''\right)\)

Từ (') và ('') ta có:

\(3xy\left(x^2+xy+y^2\right)\le\left[\dfrac{\left(x+y\right)^2+2.\dfrac{\left(x+y\right)^2}{4}}{2}\right]^2=\left[\dfrac{3}{4}\left(x+y\right)^2\right]^2=\dfrac{9}{16}\left(x+y\right)^4\)

\(\Rightarrow xy\left(x^2+xy+y^2\right)\le\dfrac{3}{16}\left(x+y\right)^4\)

\(\Rightarrow xy\left(x+y\right)\left(x^2+xy+y^2\right)\le\dfrac{3}{16}\left(x+y\right)^5\left(5\right)\)

Từ (4), (5) ta có:

\(A\le\dfrac{6\left(x+y\right)^5+1993.\dfrac{3}{16}\left(x+y\right)^5}{6}=\dfrac{\dfrac{6075}{16}\left(x+y\right)^5}{6}=\dfrac{2025}{32}\left(x+y\right)^5\)

\(\Rightarrow A\le\dfrac{2025}{32}\left(x+y\right)^5\) hay 

\(x^5+\dfrac{2023}{6}xy\left(x+y\right)\left(x^2+xy+y^2\right)+y^5\le\dfrac{2025}{32}\left(x+y\right)^5\left(6\right)\)

Từ (3), (6) ta có:

\(x^5+2023x^2y^2\sqrt{xy}+y^5\le\dfrac{2025}{32}\left(x+y\right)^5\)

\(\Rightarrow\sqrt[5]{x^5+2023x^2y^2\sqrt{xy}+y^5}\le\sqrt[5]{2025}.\dfrac{x+y}{2}\left(1'\right)\)

Mặt khác theo BĐT Cauchy ta có:

\(\sqrt{xy}\le\dfrac{x+y}{2}\left(2'\right)\)

Vì cả 2 vế của (1') và (2') đều dương nên lấy \(\left(1'\right).\left(2'\right)\) ta được:

\(\sqrt{xy}.\sqrt[5]{x^5+2023x^2y^2\sqrt{xy}+y^5}\le\sqrt[5]{2025}.\dfrac{\left(x+y\right)^2}{4}\)

\(\Rightarrow\dfrac{\dfrac{1}{\sqrt{xy}}}{\sqrt[5]{x^5+2023x^2y^2\sqrt{xy}+y^5}}\ge\dfrac{4}{\sqrt[5]{2025}.\left(x+y\right)^2}\left(7\right)\)

CMTT ta cũng có:

\(\dfrac{\dfrac{1}{\sqrt{yz}}}{\sqrt[5]{y^5+2023y^2z^2\sqrt{yz}+y^5}}\ge\dfrac{4}{\sqrt[5]{2025}.\left(y+z\right)^2}\left(8\right)\)

\(\dfrac{\dfrac{1}{\sqrt{zx}}}{\sqrt[5]{z^5+2023z^2x^2\sqrt{zx}+z^5}}\ge\dfrac{4}{\sqrt[5]{2025}.\left(z+x\right)^2}\left(9\right)\)

Lấy \(\left(7\right)+\left(8\right)+\left(9\right)\) rồi nhân mỗi vế của BĐT mới cho \(\left(x+y+z\right)^2\) ta được:

\(\left(x+y+z\right)^2\left(\dfrac{\dfrac{1}{\sqrt{xy}}}{\sqrt[5]{x^5+2023x^2y^2\sqrt{xy}+y^5}}+\dfrac{\dfrac{1}{\sqrt{yz}}}{\sqrt[5]{y^5+2023y^2z^2\sqrt{yz}+y^5}}+\dfrac{\dfrac{1}{\sqrt{zx}}}{\sqrt[5]{z^5+2023z^2x^2\sqrt{zx}+z^5}}\right)\)\(\ge\dfrac{4}{\sqrt[5]{2025}}\left(x+y+z\right)^2\left[\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{\left(y+z\right)^2}+\dfrac{1}{\left(z+x\right)^2}\right]\left(10\right)\)

Theo BĐT Cauchy ta có:

\(\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{\left(y+z\right)^2}+\dfrac{1}{\left(z+x\right)^2}\ge3.\sqrt[3]{\dfrac{1}{\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)\right]^2}}\)

\(\ge3.\sqrt[3]{\dfrac{1}{\left[\left(\dfrac{x+y+y+z+z+x}{3}\right)^3\right]^2}}\)

\(=3.\sqrt[3]{\dfrac{1}{\left[\dfrac{2}{3}\left(x+y+z\right)\right]^6}}=3.\dfrac{1}{\left[\dfrac{2}{3}\left(x+y+z\right)\right]^2}=\dfrac{27}{4\left(x+y+z\right)^2}\)

\(\Rightarrow\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{\left(y+z\right)^2}+\dfrac{1}{\left(z+x\right)^2}\ge\dfrac{27}{4\left(x+y+z\right)^2}\left(11\right)\)

Từ (10) và (11) ta có:

\(\left(x+y+z\right)^2\left(\dfrac{\dfrac{1}{\sqrt{xy}}}{\sqrt[5]{x^5+2023x^2y^2\sqrt{xy}+y^5}}+\dfrac{\dfrac{1}{\sqrt{yz}}}{\sqrt[5]{y^5+2023y^2z^2\sqrt{yz}+y^5}}+\dfrac{\dfrac{1}{\sqrt{zx}}}{\sqrt[5]{z^5+2023z^2x^2\sqrt{zx}+z^5}}\right)\)

\(\ge\dfrac{4}{\sqrt[5]{2023+2}}.\left(x+y+z\right)^2.\dfrac{27}{4\left(x+y+z\right)^2}=\dfrac{27}{\sqrt[5]{2023+2}}\left(đpcm\right)\)

Dấu "=" xảy ra khi \(x=y=z\)

 

 

Bình luận (4)
BA
1 tháng 1 2023 lúc 20:17

lâu rồi không gặp a, chúc mừng năm mới a, mà cái phương trình này lớp 9 còn e mới lớp 8 :)))))))))))))))

Bình luận (1)
NN
1 tháng 1 2023 lúc 20:17

chúc anh năm mới vui vẻ

nhưng....

Bình luận (2)
NH
Xem chi tiết
KK
1 tháng 1 2016 lúc 7:35

chúc bạn lại một năm mới vui vẻ

Bình luận (0)
OO
1 tháng 1 2016 lúc 7:36

mik cũng chúc các bạn một năm mới vui vẻ gặt hái nhiều thành công trong năm mới

 

 

Bình luận (0)
NH
1 tháng 1 2016 lúc 7:36

chúc toàn thể olm 1 năm mới vu i vẻ

Bình luận (0)
Xem chi tiết
VN
Xem chi tiết
H24
1 tháng 1 2018 lúc 20:45

Cảm ơn bn ^^!

Bình luận (0)
LT
1 tháng 1 2018 lúc 20:48

chúc bạn một năm mới gặt hái nhiều thành công nha

Bình luận (0)
PK
1 tháng 1 2018 lúc 20:53

Chúc mọi người một năm mới vui vẻ!!

Còn mình thì không. Vì mình vừa thi học kì xong, bây giờ đang đợi điểm.   :(

Bình luận (0)
VN
Xem chi tiết
HT
1 tháng 1 2023 lúc 21:19

Cảm ơn em, chúc em và cộng đồng hoc24 chúng ta một năm với nhiều sức khỏe, niềm vui và hạnh phúc.

Bình luận (1)
VN
31 tháng 12 2022 lúc 20:01

Xin lỗi các bạn vì mai mình có việc nên mình sẽ đăng trước nhé . Cảm ơn các bạn

Bình luận (1)
H24
31 tháng 12 2022 lúc 20:03

có tên mình trỏng:)))

Bình luận (1)