1) 2\(^{x+1}\).3y =12x
2) -10\(^x\).5y =20y
3) 2\(^m\)+2\(^n\) =2\(^{m+n}\)
Tìm các số x và y thỏa mãn : x^2y^2-2xy^2+8xy-12x-4x^2y+6x^2+5y^2-20y+22=0
Bài 1: Thực hiện phép tính
1, (3y +1/3y^4)^2
2, (-3x^2 -1/2x)^2
3, (x^2 +2x -3)^2
4, 3 (x+3) (x-3) - (x-9)^2
5, (x^n +x^n:1)^2
6, (5x-3y)^2 - (5x +3y)^2
7, (3x -x^2 +5)^2
8, (-2x +5y)^3
9, (1/3x^2 -5y^3)^3
10,(m^2n^3+n^2m^3) (m^2n^3 - n^2m^3)
11, (7x+6y)^2 - (7x +6y) (7x -6y)
12, (x-y)^2 +(y+x)^2 - (2x -y)^z
13, (a-b)^3 + (a+b)^3
14, (a-b)^3 -(a-b)^3
15, (3x-5y)^4 - (3x +5y)^4
Mọi người làm giúp mình vs
Phân tích các đa thức sau thành nhân tử tổng hợp :
a, 5y^3 - 10xy^2 + 5yx^2 - 20y
b, x^2 + 2xy + y^2 - xz - yz
c, 9x^2 + y^2 + 6xy
d, 8 -12x + 6x^2 - x^3
e, 125x^3 - 75x^2 + 15x - 1
Giúp mình với ạ mình đang cần gấp
a) Ta có: \(5y^3-10xy^2+5yx^2-20y\)
\(=5y\left(y^2-2xy+x^2-4y\right)\)
b) Ta có: \(x^2+2xy+y^2-xz-yz\)
\(=\left(x+y\right)^2-z\cdot\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y-z\right)\)
c) Ta có: \(9x^2+y^2+6xy\)
\(=\left(3x\right)^2+2\cdot3x\cdot y+y^2\)
\(=\left(3x+y\right)^2\)
d) Ta có: \(8-12x+6x^2-x^3\)
\(=2^3-3\cdot2^2\cdot x+3\cdot2\cdot x^2-x^3\)
\(=\left(2-x\right)^3\)
e) Ta có: \(125x^3-75x^2+15x-1\)
\(=\left(5x\right)^3-3\cdot\left(5x\right)^2\cdot1+3\cdot5x\cdot1^2-1^3\)
\(=\left(5x-1\right)^3\)
tìm bậc của các đa thức sau
a.C=\(3x^2y-2xy^2+x^3y^3+3xy^2-2x^3y^3\)
b.D=15\(x^2y^3+7y^2-8x^3y^2-12x^2+11x^3y^2-12x^2y^3\)
c.E=\(3x^5y+\frac{1}{3}xy^4+\frac{3}{4}x^2y^3-\frac{1}{2}x^5y+2xy^4-x^2y^3\)
Chia đa thức cho đơn thức
a, (8x^4 - 4x^3 +x^2) : 2x^2
b, 2x^4 - x^3 + 3x^2) : (-1/3x^2)
c, (-18x^3y^5 + 12x^2y^2 - 6xy^3) : 6xy
d,(3/4x^3y^6 + 6/5x^4y^5 - 9/10x^5y) : (-3/5x^3y)
giúp mìn với ạ
\(a.\left(8x^4-4x^3+x^2\right):2x^2=4x^2-2x+\frac{1}{2}\)
\(b.\left(2x^4-x^3+3x^2\right):\left(-\frac{1}{3x^2}\right)=-6x^6+3x^5-9x^4\)
\(c.\left(-18x^3y^5+12x^2y^2-6xy^3\right):6xy=-3x^2y^4+2xy-y^2\)
\(d.\left(\frac{3}{4x^3y^6}+\frac{6}{5x^4y^5}-\frac{9}{10x^5y}\right):-\frac{3}{5x^3y}=-\frac{5}{4y^5}-\frac{2}{xy^4}-\frac{3}{2x^2}\)
Bài 1: Tìm các số x,y thỏa mãn đăng thức:
a) 4x^2 + 3y^2 - 4x + 30y + 76 = 0
b) 3x^2 + y^2 - 12x - 20y + 112 = 0
Bài 2:
a) Tìm GTNN của biểu thức: A=16x^2 - 8x + 3
b) Tìm GTLN của biểu thức: B=19 - 6x - 9x^2
bài 2:
a)\(A=16x^2-8x+3\)
\(=\left[\left(4x\right)^2-2.4x.1+1^2\right]-1+3\)
\(=\left(4x-1\right)^2+2\)
ta thấy: \(\left(4x-1\right)^2\ge0\)
\(\left(4x-1\right)^2+2\ge2\)
vậy GTNN của A là 2 khi \(x=\dfrac{1}{4}\)
b) \(B=19-6x-9x^2\)
\(=-\left[\left(3x\right)^2+2.3x.1+1^2\right]+19\)
\(=-\left(3x-1\right)^2+19\)
ta thấy: \(-\left(3x-1\right)^2\le0\)
\(-\left(3x-1\right)^2+19\le19\)
vậy GTLN của B là 19 khi \(x=\dfrac{1}{3}\)
1. Tìm GTNN của biểu thức: C = (x + 3)(x + 2)(x - 1)(x - 2) + 3
2. Cho x + y + z = 6. Tìm GTLN của biểu thức A = xy + 2yz + 3zx
3. Tìm x,y thỏa mãn:
a) x2 + 3y2 + 20 = 2x(1 + y) + 10y
b) 5x2 + 5y2 + 8xy - 2x + 2y + 2 = 0
4. Cho x,y thỏa mãn: x2 + y2 = x + y. Tìm GTNN, GTLN của B = x - y
5. Tìm x,y thỏa mãn\(\left\{{}\begin{matrix}2x^2+4y^2-15xy-12x+45y-24=0\\x^2-2y^2-3x+3y+xy=0\end{matrix}\right.\)
2.
A = xy + 2yz + 3xz = xy + xz + 2yz + 2xz = x(y + z) + 2z(y + z)
Áp dụng BĐT: (a+b)^2/4 ≥ ab dấu = khi a = b
Ta có:
(x + y + z)^2/4 ≥ x(y + z)
(x+ y +z)^2/4 ≥ z(y + z)
=> A ≤ 3(x + y + z)^2/4 = 3.36/4 = 27
=> A max = 27 xảy ra khi:
{x = y + z
{z = y + z
<=> y = 0 và x = z = 3
1/2.(6x-2y).(3x+y)
(2/3z-2/5x).(1/3z+1/5x).1/2
(5y-3x).1/4.(12x+20y)
(3/4y-1/2x).(x+3/2y).2
(a+b+c).(a+b-c)
(x-y+z).(x+y-z)
mng giúp mình vs ạ
\(\dfrac{1}{2}\left(6x-2y\right)\left(3x+y\right)=\dfrac{1}{2}.2\left(3x-y\right)\left(3x+y\right)=9x^2-y^2\)
\(\left(\dfrac{2}{3}z-\dfrac{2}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}x\right).\dfrac{1}{2}=\left(\dfrac{1}{3}z-\dfrac{1}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}z\right).2.\dfrac{1}{2}=\dfrac{1}{9}z^2-\dfrac{1}{25}x^2\)
\(\left(5y-3x\right).\dfrac{1}{4}\left(12x+20y\right)=\left(5y-3x\right)\left(5y+3x\right).4.\dfrac{1}{4}=25y^2-9x^2\)
\(\left(\dfrac{3}{4}y-\dfrac{1}{2}x\right)\left(x+\dfrac{3}{2}y\right)=\left(\dfrac{3}{2}y-x\right)\left(\dfrac{3}{2}y+x\right)=\dfrac{9}{4}y^2-x^2\)
\(\left(a+b+c\right)\left(a+b+c\right)=\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
\(\left(x-y+z\right)\left(x+y-z\right)=x^2-\left(y-z\right)^2=x^2-y^2-z^2+2yz\)
a: \(\dfrac{1}{2}\left(6x-2y\right)\left(3x+y\right)=\left(3x-y\right)\cdot\left(3x+y\right)=9x^2-y^2\)
b: \(\left(\dfrac{2}{3}z-\dfrac{2}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}x\right)\cdot\dfrac{1}{2}\)
\(=\left(\dfrac{1}{3}z-\dfrac{1}{5}x\right)\left(\dfrac{1}{3}z+\dfrac{1}{5}x\right)\)
\(=\dfrac{1}{9}z^2-\dfrac{1}{25}x^2\)
c: \(\left(5y-3x\right)\cdot\dfrac{1}{4}\cdot\left(12x+20y\right)\)
\(=\left(5y-3x\right)\left(5y+3x\right)\)
\(=25y^2-9x^2\)
d: \(\left(\dfrac{3}{4}y-\dfrac{1}{2}x\right)\left(\dfrac{3}{2}y+x\right)\cdot2\)
\(=\left(\dfrac{3}{2}y-x\right)\left(\dfrac{3}{2}y+x\right)\)
\(=\dfrac{9}{4}y^2-x^2\)
e: \(\left(a+b+c\right)\left(a+b-c\right)\)
\(=\left(a+b\right)^2-c^2\)
\(=a^2+2ab+b^2-c^2\)
Bài 1: Tìm x,y thuộc Z thỏa mãn x^2 + 3xy + 3y^2 =3y
Bài 2: Tìm x,y thuộc Z thỏa mãn x^2 - 2xy + 5y^2=y+1
1.
PT $\Leftrightarrow x^2+3xy+(3y^2-3y)=0$
Coi đây là pt bậc 2 ẩn $x$
PT có nghiệm $\Leftrightarrow \Delta=(3y)^2-4(3y^2-3y)\geq 0$
$\Leftrightarrow -3y^2+12y\geq 0$
$\Leftrightarrow -y^2+4y\geq 0$
$\Leftrightarrow 0\leq y\leq 4$
Vì $y$ nguyên nên $y\in \left\{0;1;2;3;4\right\}$
Để pt có nghiệm nguyên thì $\Delta$ là scp. Thử các giá trị $y$ trên vô $\Delta$ ta thấy $y=0; 2;4$
Thay vô pt ban đầu thì:
$y=0\Rightarrow x=0$ (thỏa)
$y=2\Rightarrow x=-3\pm \sqrt{3}$ (loại)
$y=4\Rightarrow x=-6$ (thỏa)
2.
PT $\Leftrightarrow x^2-2xy+(5y^2-y-1)=0$
Coi đây là pt bậc 2 ẩn $x$.
$\Delta'=y^2-(5y^2-y-1)=-4y^2+y+1$
Để pt có nghiệm thì $\Delta'\geq 0$
$\Leftrightarrow -4y^2+y+1\geq 0$
$\Leftrightarrow \frac{1-\sqrt{17}}{8}\leq y\leq \frac{1+\sqrt{17}}{8}$
Mà $y$ nguyên nên $y=0$
Thay vô pt ban đầu ta có $x^2=1\Rightarrow x=\pm 1$
Vậy $(x,y)=(\pm 1,0)$