Những câu hỏi liên quan
HT
Xem chi tiết
NN
Xem chi tiết
PN
16 tháng 1 2018 lúc 12:42

\(\Delta ABC\)vuông tại \(A\Leftrightarrow AB^2+AC^2=BC^2=400\)

\(4AB=3AC\Leftrightarrow\frac{AB}{3}=\frac{AC}{4}\Leftrightarrow\frac{AB^2}{9}=\frac{AC^2}{16}\)

áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{400}{25}=16\)

\(\Rightarrow\hept{\begin{cases}AB^2=9.16=144\Leftrightarrow AB=12\\AC^2=16.16\Leftrightarrow AC=16\end{cases}}\)

Bình luận (1)
NN
Xem chi tiết
ST
15 tháng 1 2018 lúc 21:24

\(4AB=3AC\Rightarrow\frac{AB}{3}=\frac{AC}{4}\Rightarrow\frac{AB^2}{9}=\frac{AC^2}{16}\)

Áp dụng tính chất của dãy tỉ số bằng nhau và định lý pytago ta có:

\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{BC^2}{25}=\frac{400}{25}=16\)

\(\Rightarrow\frac{AB^2}{9}=16\Rightarrow AB^2=144\Rightarrow AB=12\left(cm\right)\)

\(\frac{AC^2}{16}=16\Rightarrow AC^2=16^2\Rightarrow AC=16\left(cm\right)\)

Bình luận (0)
VL
23 tháng 4 2018 lúc 8:18

bn ST 400 ở đâu ra vậy bn

Bình luận (0)
ST
7 tháng 2 2019 lúc 18:59

BC=20 => BC^2 = 400

Bình luận (0)
AA
Xem chi tiết
H24

Áp dụng định lý Py-ta-go cho tam giác ABC vuông tại A,ta có:

BC2=AB2+CA2

<=>400=AB2+CA2

Theo giả thiết: 4AB=3AC

=>AB3=AC4AB3=AC4

=>AB29=AC216AB29=AC216

Theo tính chất dãy tỉ số bằng nhau,ta có:

AB29=AC216=AB2+AC29+16=BC225=40025=16AB29=AC216=AB2+AC29+16=BC225=40025=16

Với AB29=16=>AB=12AB29=16=>AB=12

Với AC216=16=>AC=16AC216=16=>AC=16

Vậy AB=12cm

AC=16cm

Bình luận (0)
 Khách vãng lai đã xóa
H24
13 tháng 3 2020 lúc 9:59

🤬★๖ۣۜ V ๖ۣۜ★•™❄(TEAM★BTS)❄•🧨 chép mạng nhớ ghi nguồn

Bình luận (0)
 Khách vãng lai đã xóa
PL
13 tháng 3 2020 lúc 9:59

ta có tam giác ABC vuông tại A => \(AB^2+AC^2=BC^2=20^2=400\) (1)

lại có 4AB = 3AC hay \(AB=\frac{3}{4}AC\)

thế \(AB=\frac{3}{4}AC\)vào (1) ta được:

\(\left(\frac{3}{4}AC\right)^2+AC^2=400\)

\(\frac{9}{16}AC^2+AC^2=400\)

\(\frac{25}{16}AC^2=400\)

\(AC^2=256\)

\(\orbr{\begin{cases}AC=\sqrt{256}=16\\AC=-\sqrt{256}=-16\left(loai\right)\end{cases}}\)

Vậy AC = 16 (cm)

=> AB = \(\frac{3}{4}AC=\frac{3}{4}.16=12\)(cm)

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
HQ
28 tháng 1 2016 lúc 19:32

 Do tam giác ABC là tam giác vuông nên theo định lý Pytago có: BC^2=AB^2+AC^2(1). Mà theo gt 4AB=3AC=>AC=4AB/3 (2). Thay vao (1), ta co BC^2=AB^2+(4AB/3)^2<=>20^2=(25(AB^2))/9 <=> AB=12. Thay AB vao (2) =>AC=16.

Bình luận (0)
NH
28 tháng 1 2016 lúc 19:41

cho mình hỏi, 25 trong cái vế bạn thay vào ở đâu z

Bình luận (0)
H24
Xem chi tiết
NN
Xem chi tiết
NN
Xem chi tiết
MS
3 tháng 3 2018 lúc 1:04

Tam giác ABC vuông tại A suy ra: \(AB^2+AC^2=BC^2\)

\(\Rightarrow AB^2+AC^2=400\)

Vì: \(4AB=3AC\Leftrightarrow\dfrac{AB}{3}=\dfrac{AC}{4}=L>0\left(đặt\right)\)

\(\Rightarrow\left\{{}\begin{matrix}AB^2=9L^2\\AC^2=16L^2\end{matrix}\right.\)

\(\Rightarrow400=25L^2\Leftrightarrow L^2=16\Leftrightarrow L=4\left(L>0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}AB=12\\AC=16\end{matrix}\right.\)

Bình luận (0)
MN
Xem chi tiết
MN
30 tháng 1 2020 lúc 22:33

                       A B C H 20 cm 9cm 16 cm

*) Áp dụng định lí Pythagoras vào \(\Delta\)vuông ACH, ta có :

\(\Rightarrow\)AC2 = HC2 + AH2

\(\Rightarrow\)202  = 162 + AH2

\(\Rightarrow\)AH2 = 400 - 256

\(\Rightarrow\)AH2 = 144

\(\Rightarrow\)AH = 12 (cm)

*) Áp dụng định lí Pythagoras vào \(\Delta\)vuông ABH, ta có :

\(\Rightarrow\)AB2 = AH2 + HB2

\(\Rightarrow\)AB2 = 122 + 92

\(\Rightarrow\)AB2 = 225

\(\Rightarrow\)AB   = 15 (cm)

Vậy AB = 15 cm; AH = 12 cm

Bình luận (0)
 Khách vãng lai đã xóa
MN
31 tháng 1 2020 lúc 8:08

cảm ơn bạn rất nhiều!

Bình luận (0)
 Khách vãng lai đã xóa